How do Code Smell Co-occurrences Removal Impact Internal
Quality Attributes? A Developers’ Perspective

Carla Bezerra
Federal University of Ceara
Quixada, CE, Brazil
carlailane@ufc.br

Julio Martins
Federal University of Ceara
Quixada, CE, Brazil
juliomserafim@gmail.com

ABSTRACT

Code smells are poor code structures that might harm the soft-
ware quality and evolution. However, previous studies has shown
that only individual occurrences of smells may not be enough to
assess the real impact that these smells can bring on systems. In
this context, the co-occurrences of code smells, i.e., occurrences of
more than one code smell in the same class or same method, can be
better indicators of design problems for software quality. Despite
its importance as an indicator of design problems, we have little
known about the impact of removing the co-occurrence of smells
via software refactoring on internal quality attributes, such as cou-
pling, cohesion, complexity, and inheritance. It is even less clear on
what is the developers’ perspective on the co-occurrences removal.
We aim at addressing this gap through a qualitative study with 14
developers. To this end, we analyze the refactorings employed by
developers during the removal of 60 code smells co-occurrences,
during 3 months in 5 closed-source projects. We observe (i) impact
of code smells co-occurrences on internal quality attributes, (ii)
which are the most harmful co-occurrences from the developers’
perspective, (iii) developers’ perceptions during the removal of code
smells co-occurrence via refactoring activities; and (iv) what are the
main difficulties faced by developers during the removal of code
smells co-occurrences in practice. Our findings indicate that: (i) the
refactoring of some types of code smells co-occurrences (e.g., Dis-
persed Coupling-God Class) indicated improvement for the quality
attributes; (ii) refactoring code smells co-occurrences according to
the developers is difficult mainly due to the understanding of the
code and complexity refactoring methods; and (iii) developers still
have insecurities regarding the identification and refactoring of
code smells and their co-occurrences.

CCS CONCEPTS

« Software and its engineering — Software evolution; Main-
taining software.

KEYWORDS

Code Smells Co-occurrences. Refactoring. Internal Quality Attributes.

ACM Reference Format:

Julio Martins, Carla Bezerra, Anderson Uchda, and Alessandro Garcia. 2021.
How do Code Smell Co-occurrences Removal Impact Internal Quality At-
tributes? A Developers’ Perspective. In Brazilian Symposium on Software

SBES °21, September 27-October 1, 2021, Joinville, Brazil

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Brazilian Symposium
on Software Engineering (SBES 21), September 27-October 1, 2021, Joinville, Brazil,
https://doi.org/10.1145/3474624.3474642.

Alessandro Garcia
DI - PUC-Rio

Rio de Janeiro, RJ, Brazil

afgarcia@inf.puc-rio.br

Anderson Uchoéa
DI - PUC-Rio
Rio de Janeiro, RJ, Brazil
auchoa@inf.puc-rio.br

Engineering (SBES ’21), September 27-October 1, 2021, Joinville, Brazil. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3474624.3474642

1 INTRODUCTION

Throughout its evolution, the software systematically undergoes
changes that can lead to the deterioration of its quality structure [16,
42, 44, 45]. In this context, the concept of code smells arises, which
are anomalous code structures that represent symptoms that affect
the maintainability of systems at different levels, such as classes
and methods [14, 20]. However, these anomalies are considered
weaknesses in the software design that can delay development or
increase the threat of failure or errors in the future [14]. In some
cases, code smells are introduced into the source code through poor
implementation choices caused several times by the developers’
rush to deliver the functionality of a system [1].

Some works have evaluated the individual occurrences of code
smells and the relationships between these smells and their impact
on the software quality [13, 24, 28, 34, 51]. Despite the large number
of studies that investigate the effects of individual occurrences of
code smells [35], few studies investigate the effects of code smells
co-occurrences [24]. This is an important topic, because the removal
of co-occurrence can have a greater impact on code quality than
removing individual occurrences of code smells [13, 24, 50].

Another gap pointed out by literature reviews [16, 17] is that
most studies that investigate the effects of code smells and their co-
occurrences use open-source systems and that few studies consider
industrial systems [2]. Besides, the reviews point out that more
empirical studies are needed in the area of code smells refactoring
that take into account the developers’ perception about the removal
of these anomalies in the code [9, 17, 32].

This paper addresses the aforementioned limitations through a
qualitative and slightly controlled study that aims to investigate
the impact of code smells co-occurrences removal on four internal
quality attributes — cohesion, coupling, complexity, and inheritance.
To this end, we analyzed data from five closed-source software
systems. We identify the code smells co-occurrences that are most
harmful to the internal quality attributes under the developers’
perspective. Moreover, we analyze the developers’ perception on
the removal of code smells co-occurrences via refactoring activities.
Such perception was capture using the diary technique [15], in
which the developers documenting their perception during the
removal of each code smell co-occurrence. Finally, we analyze the
main difficulties faced by developers during the co-occurrences
removal. We summarize our study findings as follows.

(1) The removal of Dispersed Coupling—God Class and God Class—
Long Method co-occurrences improved all internal quality
attributes;

https://doi.org/10.1145/3474624.3474642
https://doi.org/10.1145/3474624.3474642

SBES 21, September 27-October 1, 2021, Joinville, Brazil

(2) Developers should remove and avoid introducing the follow-
ing co-occurrences into the code: Dispersed Coupling—God
Class, Feature Envy—God Class and God Class—-Long Method,

(3) One of the main difficulties for developers is to understand
the code that contains the code smells co-occurrences; and

(4) Developers still have insecurities in the identification and
removal of code smells co-occurrences.

2 BACKGROUND
2.1 Code Smells

Code smells are poor code structural that might indicate design
problems that harm the software maintenance and evolution [30].
The code smells may indicate design problems at multiple levels
of granularities, i.e., they can indicate design problems at method
and class levels. Long method is an example of a code smell that
may indicate a design problem at the method level since that smell
represents long and complex methods. On the other hand, God
Class is a code smell that can indicate problems at the class level, by
representing classes that are complex and difficult to modify [14].

Software developers often rely on code smells as indicators of
code quality [14, 37, 42, 45]. For instance, developers have often used
tools like Stack Overflow to ask about code smells, anti-patterns
and even to identify these anomalies in their own source code [39].
There are several tools for detecting code smells [12]. In this study,
we rely on the JSpIRIT [46] and JDeodorant [41] tools to detect
different types of code smells at the method and class level. Such
tools have been used by several studies in the literature [24, 25, 43].
Table 1 presents the code smells considered in this study. The first
column names the code smells. The remainder columns present: a
short description, and the tools used to detect them.

Table 1: Code smells detected in this study

Code Smells Description Tool
Feature Envy Method “envying” other classes’ features [14] JSpIRIT
God Class Too many software features into a class. It tend to be ~ JDeodorant
very large and hard to read and understand [14]

Dispersed Coupling ~ Method that calls too many methods [14] JSpIRIT
Intensive Coupling Method that depends too much from a few others [14] ~ JSpIRIT
Shotgun Surgery Method whose changes affect many methods [14] JSpIRIT
Long Method Too long and complex method [14] JDeodorant

2.2 Code Smell Co-occurrences

Code smells co-occurrences occur when there are relationships
and dependencies between two or more code smells [33, 51]. For
instance, the same class that is God Class and also has a Dupli-
cated Code [33]. Previous studies have used the code smells co-
occurrences to provide a better understanding of the impact that
code smells interactions can cause on software quality [20, 28, 51].
For instance, Yamashita et al. [51] observed that code smells inter-
actions in the same file (collocated smells) and that interactions in
coupled files (coupled smells), have shown problems with mainte-
nance activities and software quality. On the other hand, Oizumi
et al. [28] investigated how the relationships between code smells
can support developers in locating problems in the software de-
sign. The authors propose a strategy for code smells co-occurrence
groups called code smells agglomerations.

The code smells co-occurrences can be occur at class and method
levels [31]. At the method level, a co-occurrence exists when there

Martins et al.

are two or more method code smells in a given method. For instance,
when in the same method there are occurrences of code smells
such as Feature Envy and Long Method. Similarly, a class-level co-
occurrence exists when there are two or more code smells in a
given class. For instance, the occurrence of a God Class together
with another code smells in the same class.

Table 2 shows examples of code smells co-occurrences at the
class and method levels. In the first example, there is a code smell
co-occurrence (Long Method and God Class), i.e., Class1 which is a
God Class (CG) has Method1 which is Long Method (LM). In the
second example, there is a co-occurrence at the method level in
which the two code smells Long Method and Feature Envy (FE) are
“together” in Method2. This example represents how we identified
the code smells co-occurrences in our study [33].

Table 2: Examples of code smells co-occurrences

Class Method LM FE GC
Class1 method1() X X
Class2 method2() X X

2.3 Internal Quality Attributes

Internal quality attributes are key indicators of code structural qual-
ity [11]. Examples of internal quality attributes include coupling,
cohesion, complexity, and inheritance. Coupling is the degree of
interdependence between modules or classes. High coupling affects
maintainability and reusability, for instance. Cohesion is the degree
to which the internal elements of a module are related to each
other. Low cohesion may lead to high complexity and bug proneness.
Complexity is the measure of the overload of responsibilities and
decisions of a module. It affects the code readability, for instance.
Inheritance represents relationships between superclasses and sub-
classes. Finally, Inheritance enables software reusability, but large
hierarchies may lead to software maintenance problems [5].

Previous studies [3, 11, 23] apply software metrics to capture
specific internal quality attributes. For instance, Mens and Tourwé
[27] apply different software metrics for measuring internal quality
attributes. In our study, we used 13 software metrics of internal
quality attributes (see Table 4) well known in the literature [6, 10, 21,
26]. To collect the metrics we use the Understand tool to measure
all internal quality attributes [5].

3 STUDY SETTINGS

3.1 Goal and Research Questions

We followed the Goal Question Metric template [48] to define our
goal as follows: analyze the removal of code smells co-occurrences;
for the purpose of understating their impact on internal attributes
of software quality; with respect to (i) the most harmful code smell
co-occurrences; (ii) the most harmful from the developer’s perspec-
tive; and (iii) difficulties and perceptions of developers during the
removal of code smell co-occurrences; from the viewpoint of soft-
ware developers; in the context of five closed-source systems. Our
research questions (RQjs) are discussed as follows.

RQ1: Which code smells co-occurrences are most harmful to the
internal quality attributes? - RQ1 aims at understanding which are
the most harmful code smells co-occurrences for internal quality

How do Code Smell Co-occurrences Removal Impact Internal Quality Attributes?
A Developers’ Perspective

attributes. Answer this research question, it is important because
it allows us to know and understand which are the most harmful
co-occurrences for software quality. Thus, by answering RQ1, we
can provide guidance on which co-occurrences should be avoided.

RQ3: Which code smells co-occurrences are considered most harm-
ful from the developer’s perspective? - RQy aims at assessing which
code smells co-occurrences are harmful from the developer’s per-
spective. This research question is important, since previous stud-
ies [23-25, 49] have considered the impact of co-occurrences on
maintainability, without considerate the developer’s perspective.
Thus, by answering RQ», we can understand developers’ percep-
tions about code smells co-occurrences.

RQ3: What are the main difficulties faced by developers during
the removal of code smells co-occurrences in practice? — RQs3 aims
at identifying the main difficulties faced by developers during the
removal of code smells co-occurrences via software refactorings. By
answering RQ3, we can understand what are the main difficulties
and what criteria the developers take into account to explain the
difficulty of removing code smells occurrences.

3.2 Study Steps

This section describes the study steps, in order to support the in-
vestigation of code smells co-occurrences.

Step 1: Selecting closed-source systems for analysis. We
have selected five closed-source systems that are being developed
by our industrial partners. To select the systems, we used the fol-
lowing criteria: (i) the system must be mostly written in the Java
programming language, due to the availability of software metric
and refactoring mining tools; (ii) systems that are already in a pro-
duction environment; and (iii) systems with the most lines of code.
Table 3 presents general data per system. The first column names
the system!. The remainder columns present: system domain; num-
ber of classes; and, number of lines of code (LOC). We collected all
data via Understand tool.

Table 3: General data of the target software systems

System Domain # of classes # of methods # LOC

S1 Management of Events 78 612 4790
S2 Extension and Research Projects 110 706 6464
S3 Risk Management 106 698 4296
S4 Employee Competency 183 1247 8384
S5 Student Activities 48 250 1910

The S1 aims to allow the management of public and private
events. S2 aims to store and manage extension actions and research
projects developed by university employees. S3 aims to enable risk
management at a university. S4 aims to enable employee compe-
tency management. Finally, S5 aims to facilitate the management of
complementary student activities. All the target systems are web-
based and developed using Spring framework, Thymeleaf, Vue.js,
and Jquery technologies.

Step 2: Detecting code smells co-occurrences. Before de-
tecting the code smells co-occurrences, we identified the individ-
ual occurrences of six types of code smells: Feature Envy, God
Class, Dispersed Coupling, Intensive Coupling, Shotgun Surgery and
Long Method. The code smells were collected using the JDeodor-
ant [18] and JSpIRIT [46] tools. Next, we detected the code smells

!We omitted their names due to intellectual-property constraints.

SBES ’21, September 27-October 1, 2021, Joinville, Brazil

co-occurrences in each target system. The types of relationships
used to identify the co-occurrences are described in Section 2.2.
Step 3: Measuring internal quality attributes. Table 4 presents

the 13 software metrics that we used to measure internal quality
attributes [6, 10, 21]. In total we measuremed four quality internal
attributes: cohesion, coupling, complexity, and inheritance. The
first column lists the internal quality attributes. The second col-
umn presents the software metrics related to each internal quality
attribute. Finally, the third column describes each metric.

Table 4: Metrics of the internal quality attributes analyzed
in this work [6, 10, 21, 26]

Attributes Metric

Cohesion Lack of Cohe-
sion of Methods
(LCOM?2) [6]
Lack of Cohe-
sion of Methods

Description
Measures cohesion of a class. The higher the value of
this metric, less cohesive is the class.

Number of disjoint components in the graph that repre-
sents each method. The higher the value of this metric,

(LCOMS) [6]

less cohesive is the class.

Coupling

Coupling Between
Objects (CBO) [6]

Coupling Between
Objects Modified
(CBO Modified) [6]
Fan-in (FANIN) [6]

Fan-out
(FANOUT) [6]

Number of classes that a class is coupled. The higher
the value of this metric, more coupling is the classes
and methods.

Number of other classes coupled to. The higher the
value of this metric, more coupling is the classes and
methods.

Number of other classes that reference a class. The
higher the value of this metric, more coupling is the
classes and methods.

Number of other classes referenced by a class. The
higher the value of this metric, more coupling is the
classes and methods.

Complexity

Weighted Method
Count (WMC) [26]

Sum Cyclomatic
Complexity

(SCC) [26]

Nesting

(MaxNest) [21]

Essential Complex-
ity (EVG) [26]

Sum of cyclomatic complexity of all nested functions
or methods. The higher the value of this metric , more
complex is the classes and method.

Sum of cyclomatic complexity of all nested methods.
The higher the value of this metric, more complex is
the classes and methods.

Maximum nesting level of control constructs. The
higher the value of this metric, more complex is the
classes and methods.

Measure of the degree to which a module contains un-
structured constructs. The higher the value of this met-
ric, more complex is the classes and methods.

Inheritance

Number Of Chil-
dren (NOC) [6]

Depth of Inheri-
tance Tree (DIT) [6]

Bases Classes
(IFANIN) [10]

Number of subclasses of a class. The higher the value
of this metric greater is the degree of inheritance of a
system.

The number of levels that a subclass inherits from meth-
ods and attributes of a superclass in the inheritance tree.
The higher the value of this metric greater is the degree
of inheritance of a system.

Immediate number of base classes. The higher the value
of this metric greater is the degree of inheritance of a
system.

To compute each metric, we used a non-commercial license of the
Understand tool. We selected theses metrics because they enable
us to assess different properties of each attribute [4, 6], such as
LOC and CBO that measures the size and coupling, respectively.
Therefore, these code metrics can reveal the quality of the target
system before and after the code smells co-occurrences removal in
terms of internal quality attributes.

Step 4: Performing the removal of co-occurrences of code
smells with software developers. This step aims to conduct the
removal of co-occurrences of code smells identified in Step 2. For
this purpose, we have recruited developers who contribute to the
development of each selected software system to participate as
subjects in the study. Thus, we sent a Characterization Form for
each developer. This form aimed to characterize the developer
regarding education, experience with software development, and
their projects. Their answers were analyzed to determine which of

SBES °21, September 27-October 1, 2021, Joinville, Brazil

them were eligible to participate in the study. Table 5 summarizes
the characteristics of each developer selected for the experiment.
All the developers are from the same company, but not everyone
was aware of all systems; 3 had prior knowledge of S1, 4 of S2, 4 of
S3, 2 of S4, and 2 of S5. The company released the developers as a
regular part of the job.

Table 5: Characterization of developers

D Experience Education Quality Code o
in years Level Metrics Smells

P1 3 years Graduate Degree Basic Basic Intermediary
P2 6 years Graduate Degree Basic Basic Intermediary
P3 4 years Graduate Degree Advanced Advanced Advanced
P4 2 years Graduate Degree Intermediary Intermediary Advanced

P5 4 years Master Degree Basic Intermediary ~ Advanced

P6 4 years Graduate Degree Basic Basic Intermediary
P7 2years Graduate Degree Intermediary Intermediary Intermediary
P8 2 years Graduate Degree Basic Basic Intermediary
P9 2years Graduate Degree Intermediary Intermediary Advanced
P10 3 years Graduate Degree Basic Basic Intermediary
P11 3 years Graduate Degree Basic Basic Intermediary
P12 5years Graduate Degree Intermediary Intermediary Advanced
P13 8 years Master Degree Advanced Advanced Advanced
P14 4 years Graduate Degree Basic Basic Intermediary

After selected the developers we asked them to perform the
removal of code smells co-occurrences (both method and class
levels) in their systems thought manual software refactoring. We
explain in more detail the experimental procedure used to remove
the code smells co-occurrences in Section 3.3.

Step 5: Documenting the developer’s perspective during
the removal of code smell co-occurrences. We rely on the diary
technique for document the developers’ perception concerning the
removal of code smell co-occurrences during the refactoring appli-
cations. The diary technique consists of a data collection method in
which participants record in a form, their daily activities about any
event that has affected them positively or negatively. This technique
is a way to understand the participant’s behavior, minimizing the
influence of researchers [15]. In this study, the developers used the
diary technique during the removal of code smell co-occurrences
to record the answers to the following questions: (1) I am currently
working on refactoring which co-occurrence?; (2) What are my main
difficulties in removal this co-occurrence?; (3) What is the most harm-
ful co-occurrence that I am removing?; (4) Why did I choose this
co-occurrence as the most harmful?; and (5) What refactoring opera-
tions am I using to remove co-occurrences?. Thus, by using the diary
technique we can capture the perception of the developers at the
time of removal of code smell co-occurrences.

Step 6: Analyzing the removal of code smell co-occurrences
and the developers’ perception. After the removal of code smell
co-occurrences, we performed new measurements of the internal
quality attributes. Our goal was to verify if the system quality
improved or worsened after the removal of co-occurrences via
refactoring. To this end, we used the same strategy of Tarwani and
Chug [40], in which the sum of the metrics of each internal quality
attribute is used. Therefore, if the value of the sum of the metrics
of a given internal quality attribute increases, it means that this
attribute has worsened. We measured and calculated the value of
each metric in each class before and after the refactoring commits
related to the complete removal of a given code smell co-occurrence.

For instance, we used two metrics to calculate the cohesion (see
Table 2.3), we measured and calculated the sum of the value of each

Martins et al.

metric of this attribute in the class that contained the co-occurrence
before the removal and after the removal of the co-occurrence. Next,
we analyzed three possible scenarios: (1) If the value of the two
metrics has decreased, then cohesion has increased/improved; (2)
If the value of the two metrics has increased, then the cohesion
has decreased/worsened; and (3) If there was no change in the
value of the metrics, then the cohesion remained unaffected. In
summary, we used this approach to all other metrics and internal
quality attributes. More details on the detection of code smell co-
occurrences and measuring systems before and after removing code
smells co-occurrences are found in our research website?.

Finally, we analyzed the responses of developers. To this end,
we rely on Grounded Theory procedures [38]. More specifically,
we used the open and axial coding procedures to analyze the types
of occurrences considered most harmful, and the main difficulties
faced by developers throughout the refactoring process.

3.3 Experimental Procedures

The study was composed by a set of four activities.

Activity 1: Training session. We conducted a training session
with all participants about essential concepts for the study, such as
code smells and their co-occurrences, internal quality attributes, and
refactoring operations. We also trained the participants about how
to identify the code smells co-occurrences. We spent four hours. We
presented a set of practical examples that illustrate refactoring oper-
ations that could be applied in each co-occurrence presented in the
first part of the training. Next, we provide a set of toy examples for
developers to apply refactoring methods to remove code smells. We
also explained to the developers how the diary technique worked
so that they could use this technique during the refactorings of each
code smell co-occurrence. We decided to provide a training session
to level up their knowledge about the main concepts regarding
our study. Thus, we tried to reduce the bias by focusing on main
concepts and presenting theoretical and practical examples.

Activity 2: Removal of co-occurrences of code smells via
manual refactoring. We asked developers to perform the removal
of the complete code smells co-occurrences, i.e., the two code smells
that characterize the co-occurrence, in both at the method and
class level thought manual software refactoring. To support the
removal of code smells co-occurrences, we provided participants a
list that summarized the name of methods or classes in which the
co-occurrences of code smells were identified from Step 2.

Additionally, for each code smell co-occurrence, we created is-
sues on Github related to refactoring activities. Each issue contained
information about the class and the method affected by a code smell.
Thus, the developers were free to choose issues, and which code
smell co-occurrences to refactor. We conducted weekly meetings to
check the progress of the activities and if the developers founded
any type of difficulty or obstacle in the refactoring process. Despite
the freedom of developers to choose issues, we were concerned
about the bias of the choice of developers, and in training, they were
asked to choose different types of co-occurrences to remove. We
instructed developers to make it clear which commits were related
to a refactoring activity. Thus, each commit has tagged to with the
label representing the name of the code smell co-occurrence to be

Zhttps://julioserafim.github.io/SBES2021/

https://julioserafim.github.io/SBES2021/

How do Code Smell Co-occurrences Removal Impact Internal Quality Attributes?
A Developers’ Perspective

refactored. Additionally, separate branches were created for each
of the refactoring activities.

Activity 3: Perception documentation along the removal
of code smells co-occurrences. During the entire process of re-
moval co-occurrences via refactoring, developers were instructed
to document their perceptions using the diary technique [15]. Thus,
each developer documented which co-occurrence he was working
on at the time, which co-occurrence was considered to be the most
harmful during removal, and the reason for this choice. In addition,
the developers explained the main difficulties related to the removal
of co-occurrence.

Activity 4: Validation of complete removal of code smells
co-occurrences. We analyzed the commits to verify if the code
smells co-occurrences were completely removed by the develop-
ers. Two researchers carried out the analysis and review of the
results until reaching a consensus. We also analyzed: (1) the im-
pact of code smells co-occurrence removal on the internal quality
attributes (cohesion, coupling, inheritance, and complexity); (2) the
number of days which developers spent on each issue removing
co-occurrences; and (3) the number of commits it took for the de-
veloper to refactor the code smells co-occurrences. The analysis of
the projects was performed project-by-project, starting with the
S1 system and finish with the S5 system. The entire removal of
code smells co-occurrences via refactoring for all target systems
took three months and involved 14 developers. Our analysis took
2 months to completed. Table 6 shows the number of code smells
co-occurrences, the number of refactoring commits and the number
of total commits.

Table 6: Number of refactoring commits and number of co-
occurrences removed

refactoring # total of
System # co-occurrences

commits commits
S1 16 92 1597
S2 30 132 1056
S3 12 70 1196
S4 20 106 2471
S5 4 20 111

4 RESULTS AND DISCUSSION

4.1 Co-occurrences of Code Smells that are
more harmful to quality attributes (RQ;)

We address RQ; by analyzing the impact of code smell co-occurrences
removal on four internal quality attributes: coupling, cohesion, com-
plexity, and inheritance. The removal of co-occurrences was per-
formed via refactorings employed by 14 developers. Table 7 shows
the impact of code smell co-occurrences removal for the internal
quality attributes considering all target systems. The first column
represents the co-occurrence. The remainder columns present the
impact of code smell co-occurrences removal for cohesion, complex-
ity, coupling, and inheritance, respectively. The T symbol indicates
an increase in the value of the attribute after the co-occurrences re-
moval, the | symbol indicates a decrease in the value of the attribute
after the co-occurrences removal, and the — symbol indicates that
the value of the attribute remained unaffected.

We emphasize that if the cohesion increases (by decreasing the
values of the metrics LCOM2 and LCOM3)), it means that this

SBES ’21, September 27-October 1, 2021, Joinville, Brazil

attribute has been improved because of the greater the cohesion of a
class or method the better the system quality. Conversely, attributes
such as complexity and coupling should be kept as small as possible
to indicate an improved code quality. In fact, a high complexity may
indicates a code more difficult to understand and a high coupling
may indicate a code more difficult to modify. Thus, for these two
attributes, their decreases mean an increase in quality. Finally, an
increase in the inheritance attribute can mean greater reusability
in the code and, consequently, a better quality. However, care must
be taken as excessive inheritance can lead to heavy coupling and
be detrimental to the software [14].

Co-occurrences that were removed and improved all in-
ternal quality attributes. Results of Table 7 reveal some interest-
ing observations. The removal of Dispersed Coupling—God Class and
God Class—Long Method improved all internal quality attributes.
More specifically, the removal of Dispersed Coupling—God Class in-
creased the cohesion by 3.16%, decreased the complexity by 24.59%,
and increased the inheritance by 3.57%. These observations indi-
cate that the removal of these co-occurrences brings a significant
improvement of system quality or that the presence of these co-
occurrences indicates a degradation of the system quality. Thus, we
believe that it is worthwhile for developers, quality analysts, man-
agers, and other professionals to focus on removing these specific
co-occurrences to improve the quality of the systems.

Finding 1: The removal of Dispersed Coupling-God Class
and God Class-Long Method has improved all internal qual-
ity attributes, this suggests that the presence of these co-
occurrences are harmful to the system quality.

Co-occurrences that were removed and improved at least
three internal quality attributes. Backing to Table 7, we can
observed that the removal of some co-occurrences, such as Fea-
ture Envy-God Class, and God Class—Shotgun Surgery improved the
cohesion, complexity e coupling attributes. With exception of inher-
itance attribute that has remained unaffected. More specifically, the
removal of Feature Envy-God Class caused an increase of 10.51%
in cohesion, a decrease of 30.98 % in complexity and a decrease of
21.52% in coupling. On the other hand, the removal of God Class-
Shotgun Surgery increased cohesion by 2.59%, decreased by 27.61%
complexity and decreased by 19.14% the coupling. Finally, the re-
moval of Dispersed Coupling-Long Method resulted in decreased of
complexity in 9.62%, coupling in 15.48%, and increased the inheri-
tance in 5.56% and worsened the cohesion attribute in 30.80%.

Finding 2: The removal of Feature Envy-God Class and God
Class-Shotgun Surgery has improved three internal quality
attributes. This also indicates that these co-occurrences need
more attention from developers.

Co-occurrences that were removed and improved only one,
and at least two internal quality attributes. The removal of In-
tensive Coupling-Long Method worsened the cohesion in 19.90%,
and complexity in 12.63%, however, the coupling decreased 6.81%.
On the other hand, the removal of Feature Envy-Intensive Coupling
resulted in a decrease for the coupling in 2.59% and has not signifi-
cantly changed any other attributes. Additionally, the removal of
the co-occurrence Feature Envy-Long Method was the only one that
did not improve any internal quality attribute, since it resulted in

SBES °21, September 27-October 1, 2021, Joinville, Brazil

Martins et al.

Table 7: The impact of code smell co-occurrences removal for internal quality attributes.

Co-occurrence Cohesion Complexity Coupling Inheritance
Feature Envy-God Class 110.51% 130.98% 121.52% -

God Class—Shotgun Surgery 12.59% 127.61% 119.14% -

Dispersed Coupling—God Class 13.16% 124.59% 120.00% 13.57%
Feature Envy-Long Method 116.17% 12.95% T4.99% -

Intensive Coupling—Long Method | |19.90% T12.63% 16.81% =

Dispersed Coupling—Long Method |30.80% 19.62% 115.48% 15.56%
Dispersed Coupling—Feature Envy = |39.76% 122.12% 113.50% -

Feature Envy-Intensive Coupling - - 12.59% -

God Class-Long Method 119.97% 141.59% 133.98% 1 11.00%

the worsening of the cohesion in 16.17%, the complexity at 2.95%
and coupling increased by 4.99%. Finally, the removal of Dispersed
Coupling-Feature Envy has improved 2 attributes: decreased the
complexity in 22.12% and coupling in 13.50%. However, but it
worsened the cohesion in 39.76%.

Finding 3: The removal of Feature Envy-Long Method sug-
gests a negative effect on cohesion, complexity and coupling.

Implications of RQ;. Our findings suggests that the follow-
ing co-occurrences Dispersed Coupling-God Class, God Class-Long
Method, Feature Envy-God Class and God Class-Shotgun Surgery are
extremely harmful to the software quality and that their removals
results in an improvement in the internal quality attributes. Such
findings also suggest that the removal of certain co-occurrences
improves the software quality, and thus confirms the observation
of prior studies on the removal of code smell co-occurrences [13,
24, 50]. Additionally, the removal of co-occurrences such as Dis-
persed Coupling-Feature Envy and Intensive Coupling-Long Method
improves certain attributes and worsens others. Thus, project man-

agers and developers can choose to remove or not these co-occurrences

aimed to improve a certain internal quality attribute. Finally, the
removal of Feature Envy-Long Method did not benefit any of the
internal quality attributes, suggesting that the removal of some
co-occurrences might result in a negative effect on quality [25].

4.2 Most Harmful Co-occurrences from the
Developers’ Perspective (RQ;)

We address RQ; by analyzing the commits of refactoring of code
smell co-occurrences, and the developers’ responses that were writ-
ten using the diary technique.

Table 8: The most harmful code smell co-occurrences under
the developers’ perception

Co-occurrences Developer #Developers
Feature Envy-God Class P1,P5P6,P11,P12,P13 6
Dispersed Coupling—God Class P3,P8,P9,P14,P7 5
God Class—-Long Method P2,P4 P10 3

Table 8 presents the most harmful co-occurrences according to
the developers’ perception. The first column shows the type of
co-occurrences and the second column lists the developers who
considered the co-occurrence as most harmful. Finally, the last
column summarizes the number of developers who considered the
co-occurrence as most harmful.

The most harmful co-occurrences under developers’ per-
ception. Table 8 allows us to observe that the co-occurrences con-
sidered most harmful under the developers’ perception were: Fea-
ture Envy-God Class, mentioned by five developers; Dispersed Cou-
pling—God Class mentioned by four developers; and God Class—Long
Method mentioned by three developers. We can also observe that
the code smell God Class is present in the three co-occurrences
mentioned by the developers. This suggests that a co-occurrence
containing this smell can be considered harmful by developers.
Such observation was mentioned by the developers as follows.

P11: “Feature Envy and God Class are the most harmful, and in my opinion
the God Class smells is most harmful due to the difficulty [in removing them]”

P5: “The class that has the God Class would need many refactorings to
decrease its size considerably.”

Finding 4: The presence of the God Class smell in a co-
occurrence suggests that co-occurrence is more likely to be
considered harmful by software developers.

Although the aforementioned co-occurrences have been con-
sidered to be the most harmful in the developers’ perception, the
removal of these co-occurrences via refactoring had a positive
impact on the internal quality attributes. In fact, in Table 7, we ob-
served that the removal of Dispersed Coupling—God Class, and God
Class—Long Method improved all internal quality attributes, and
the removal of Feature Envy—God Class improved the attributes of
cohesion, complexity and coupling. Such observations suggest that
the presence of these co-occurrences is harmful to quality internal
attributes and developers. Therefore, these co-occurrences must be
removed as possible. Additionally, software developers should be
more attentive not to introduce these co-occurrences during the
development process, since these co-occurrences tend to appear
frequently in software systems [22, 24, 29, 51].

Finding 5: Developers should pay attention to remove and
avoid the introduction of Dispersed Coupling—God Class, Fea-
ture Envy—God Class and God Class—Long Method co-occurrences
during the software development.

Co-occurrences that needed more commits to be removed.
Table 9 overviews the number of days and commits required to
remove each code smell co-occurrence. The first column names the
co-occurrences. The second column shows the number of occur-
rences by type considerate all systems. The third column shows the
total number of commits to remove a type of co-occurrence. The

How do Code Smell Co-occurrences Removal Impact Internal Quality Attributes?
A Developers’ Perspective

SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Table 9: Information on number of days and commits to remove co-occurrences in the five target systems

Co-occurrence Number of occurrences Total Commits Total Days Average Commits Average Days
Feature Envy-God Class 24 106 50 441 2.08

God Class—Shotgun Surgery 6 12 12 2 2
Dispersed Coupling—God Class 13 84 30 6.46 23
Feature Envy-Long Method 11 50 13 4.54 1.18
Intensive Coupling—Long Method 8 46 25 5.75 3.12
Dispersed Coupling—Long Method 11 69 17 6.27 1.54
Dispersed Coupling—Feature Envy 2 7 2 3.5 1
Feature Envy-Intensive Coupling 1 1 4 1

God Class—Long Method 6 42 12 7 2

fourth column shows the total number of days to remove a type of
co-occurrence. Finally, the fifth and sixth columns show the average
of commits and the average number of days required to remove
one occurrence per type. For instance, the Feature Envy-God Class
co-occurrence had appeared 24 times on the five target systems and
required 106 commits and 30 days to be completely removed and
to remove an instance of this co-occurrence, the developers took
an average of 4.41 commits and 2.18 days.

By looking at Table 9, we can observe that the Feature-Envy-
God Class co-occurrence was the one that had the most commits
for its removal, but also it was the one that had more appear (24)
in the five systems. Thus, we used the average as a measure to
evaluate the number of commits that are required to remove a co-
occurrence. Therefore, the God Class-Long Method co-occurrence
had the highest average with seven commits, i.e., was required an
average of seven commits for removing an instance of God Class-
Long Method and a total of 42 commits were needed to refactor all
six occurrences of this co-occurrence. Other co-occurrences that
had high average commits were Dispersed Coupling-God Class with
an average of 6.46 commits; Dispersed Coupling-Long Method with
an average of 6.27 commits; and Intensive Coupling-Long Method
with an average of 5.75 commits.

Co-occurrences that needed more time to be removal. Sim-
ilar to the number of commits, we analyzed the average days instead
of total days. The co-occurrence with the highest average of days
was Intensive Coupling-Long Method with 3.12 days, i.e., every 3.12
days it was possible to remove one out of eight occurrences of
Intensive Coupling-Long Method. This is an interesting result be-
cause despite this co-occurrence have the highest average number
of days to be removal via refactoring, no developer has mentioned
this co-occurrence as the most harmful. Other co-occurrences that
had high average days were: Dispersed Coupling-God Class with
2.3 days average, Feature Envy-God Class with 2.08 days and God
Class-Long Method with 2 days average. Such results are in line
with the developers’ perception, since these three co-occurrences
were mentioned by the developers as the most harmful.

Finding 6: The Intensive Coupling-Long Method, Dispersed
Coupling-God Class, Feature Envy-God Class and God Class-
Long Method co-occurrences are the ones that take the longest
to be removed by software developers.

Implications of RQ,. Our findings suggest that the presence
of the God Class smell can lead to harmful co-occurrences. Addi-
tionally, developers should prioritize the removal of co-occurrences
such as Dispersed Coupling-God Class, Feature Envy-God Class and

God Class-Long Method. Moreover, if the software development is
at the beginning, it is recommended to avoid the introduction of
these smells as they are harmful, and because they take the longest
to be removed, together with Intensive Coupling-Long Method.

4.3 Main Difficulties Faced by Developers
During the Co-occurrences Removal (RQs)

We address RQ3 by analyzing the developers’ responses that were
written using the diary technique. Thus, from the responses col-
lected, we made a qualitative analysis and four categories were
identified: (1) Difficulty in Understanding the Source Code; (2) Com-
plexity of Methods and Functions; (3) Refactoring Effort; and (4) a
Large Amount of Source Code. Table 10 describes the categories
identified during the analysis of the developers’ responses. The first
column refers to the category and the second column its description.

Table 10: Description of the categories

Category Description
Difficulty in Understanding geters to the difficulty of understanding the source code
y the developer.

the Source Code

It is the definition of Methods or functions that make many

(Cloaplerlyy off Maifanids and calls to other methods in the source code.

Functions

Refers to a high level of work and rework in the refactoring
activities of the source code by the developer.

It refers to the massive amount of source code written

in software, either in a class or in a method.

Refactoring Effort

Large Amount of Source
Code

The main difficulties faced by software developers. Fig-
ure 1 shows the categories and their relationships with the main dif-
ficulties faced by developers during the removal of co-occurrences.

Source Code

Difficulty in Understanding the
Functions

is associated with I Complexity of Methods and
—

-~

is associated with
Jo asned si

., is assaciated with) I Large Amount of Source Code

Figure 1: Categories and relationships identified for devel-
opers’ difficulties

Looking at Figure 1, we can identify the categories and rela-
tionships associated with the main difficulties faced by developers

SBES °21, September 27-October 1, 2021, Joinville, Brazil

during the removal of code smell co-occurrences. The association
between Difficulty in Understanding the Source Code and Complexity
of Methods or Functions is an aspect highlighted in our research,
and this is reinforced by:

P4:“One method doing the responsibilities of another method, makes it a little
tricky to understand what is going on.”

P8:“The co-occurrences that I am removing use several methods and functions
of other classes, and this affects the legibility of the class and the method,
decreasing the understanding of the code.”

P6:“They affect the initial understanding of how the code works, given the
excess of methods called in a class or method. ”

These observations suggests that co-occurrences of code smells
are usually associated with complex methods. We also identified a
relationship between Difficulty in Understanding the Source Code
and Refactoring Effort that can be highlighted through the following
statements made by the developers:

P4:“The biggest difficulty is to understand the code, because to remove the
anomalies it was necessary to study the logic of the code. In addition, I had
difficulty in identifying the anomaly location.”

P2:“Tt is more difficult to understand, because the co-occurrence increases
coupling”

Thus, we can observe that the difficulty of understanding the
code is a crucial factor for the co-occurrence removal. Our anal-
ysis suggests that the less the developer understands the source
code with co-occurrence, the more work the developer will have to
remove it.

Finding 7: One of the main difficulties for software develop-
ers is to understand the source code that contains co-occurrences,

The Refactoring Effort category relates to two other categories
which are: Complexity of Methods or Functions and Large Amount of
Source Code. An example of how Refactoring Effort is associated with
a Large Amount of Source Code, and the relationship between Refac-
toring Effort and Complexity of Methods or Functions are highlighted
as follows:

P11:“The co-occurrences made the code very large, and this made the code
[more] complex for future maintenance”

P11:“The co-occurrence is harmful because it calls various methods for other
functions, and thus requires more attention in its removal, as long as it does
not interfere with the functioning of the system.”

In this context, we can observe that complex methods and large
code are directly related to a greater refactoring effort during the
removal of code smells co-occurrences. Our analyzes suggest that
the presence of code smells co-occurrences can lead to a massive
increase in the source code, leaving the complex methods and con-
sequently increasing the developers’ refactoring effort [36]. We
also observed a relationship between a Large Amount of Source
Code and Complexity of Methods or Functions. We found that a large
amount of code can mean greater complexity of methods or func-
tions. Therefore, developers should pay attention to the source
code size that they produce, since this code with co-occurrences
can generate complex methods. This observation can be explained
from the following comment:

Martins et al.

P9:“The co-occurrences make the code large and disorganized, making classes
and methods more complex.”

Finding 8: The more complex and extensive the methods, the
greater refactoring effort required to remove co-occurrences.

Developers still do not feel safe to identify and remove
code smells co-occurrences. We observed that developers still
have insecurities concern the identification and removal of co-
occurrences of code smells. Some developers are not sure whether
they removed the co-occurrence completely or if they removed it
correctly. Such insecurities can be observed as follows:

P1:“T have difficulty removing the co-occurrence and checking if the solution
that I made was adequate and if it actually solves the smell.”

P6:“Sometimes it was difficult to identify where the anomaly was affecting.”

P8:T have difficulty analyzing what to do to refactor the anomaly, and decide
what is the refactoring operation in each situation.’

These observations suggest that the developer does not feel safe
to apply the refactoring operations and completely remove the
co-occurrence of code smell. In addition, sometimes the developer
does not know or is not sure whether the solution used for removal
was the best one at that time, and this can negatively affect the
quality of the software instead of improving it.

Implications of RQs. Our findings suggest that complex meth-
ods can hinder the developers’ understanding during the removal
of co-occurrences, suggesting a greater effort during the refactoring
activities. In fact, one of the characteristics of co-occurrences is to
make it difficult to understand the source code [34]. A large amount
of source code can generate complex methods and thus indicate
a greater refactoring effort. As such, we believe that developers
should adopt source code optimization as much as possible in their
daily practice. In addition, we can observe that developers still have
insecurities in the removal and identification of co-occurrences
of code smells. Despite our results on the developers’ perception
regarding the removal of co-occurrences of code smells, further
studies are still needed to understand the developer during the
removal of co-occurrences [7, 8, 16, 19].

5 THREATS TO VALIDITY

Internal validity. One of the threats is the small number of sys-
tems and code lines analyzed in our study. However, the systems
are closed-source, and we wanted to have a deeper understanding
of those systems. Another threat identified is that we analyzed
only classes in production and not other types of classes (e.g., test
classes) at the time of detecting co-occurrences and measuring qual-
ity. However, we consider that developers are more concerned with
classes with features linked to the system than the test classes.
Construct validity. We use JSpIRIT and JDeodorant tools to
detect code smells and their co-occurrences. Both tools have defined
detection strategies, and this can be a potential threat to validity, as
other tools with different approaches could identify different code
smells. However, we chose these tools because they are accurate
and well consolidated. Another threat to validity found is that the
participants are the subjective filling of the diary by the developers.

How do Code Smell Co-occurrences Removal Impact Internal Quality Attributes?
A Developers’ Perspective

However, to mitigate this threat, we explain in detail the goal of
each question in the diary during the training session.

External validity. The results found in our study are used for
systems implemented using the the Java programming language.
Another limitation is that some developers had little knowledge of
the diary technique, code smells, quality metrics and refactoring.
To mitigate this threat, we conduct training with all developers.

6 RELATED WORK

Refactoring code smells and internal quality attributes. Fer-
nandes et al. [11] conducted a quantitative study on the impact of
refactoring on internal quality attributes. The results found by the
authors pointed out that most refactorings have improved one or
more internal quality attributes. Chavez et al. [5] conducted a study
to investigate the impact of refactorings on the internal quality
attributes in 23 open-source projects implemented in Java. They
found that in 65% of the cases, the internal quality attributes im-
proved while whereas in the other 35%, these attributes remained
unchanged. However, these studies did not assess the impact of
removing co-occurrences for internal quality attributes or devel-
opers’ perceptions. In our study, we found that removing certain
co-occurrences can improve internal quality attributes and that
developers still have insecurities when removing co-occurrences.
Detection and analysis of co-occurrences of code smells.
Palomba et al. [29] conducted a large-scale empirical study to quan-
tify and analyze which code smells are most likely to co-occur
during the software development cycle. As a result, the authors
identified that 59% of the classes are measured by more than one
occurrence of code smells. Walter et al. [47] performed an empir-
ical analysis of collocated smells, which are interactions of code
smells co-occurrences in the same file, and involved a set of 92
systems from different domains detecting 14 different code smells
using 6 tools. As a result, the authors identified in all the domains
analyzed that there is a certain group of code smells that tend to
co-occur, such as: Brain Class, God Class, Dispersed Coupling and
Long Method. Walter et al. [47] and Palomba et al. [29] take into
account code smells co-occurrences. However, in both studies, an
analysis is made of which smells are more likely to co-occur and
do not investigate the impact of these anomalies on code quality.
Code smells co-occurrences and software quality. Yamashita
and Moonen [49] analyzed the impact of co-occurrences for the
maintainability of 4 medium-sized systems in Java. The authors
noted that co-occurrences negatively affect maintainability and
software maintenance activities. OQizumi et al. [28] carried out a
study to investigate whether code smells co-occurrences, which
the authors call agglomerations, which can mean software design
problems. The results found that co-occurrences of code smells can
cause problems in software design and are an effective approach to
locating these problems. Politowski et al. [34] conducted a study
with 133 participants and 372 comprehension activities involving
co-occurrences of two code smells: Blob and Spaghetti Code. The
study aimed to investigate the developers’ understanding of the
source code from the co-occurrences of these two anomalies. The
results found by the authors showed that the readability and un-
derstanding of the code worsened as the developers took longer to
finish their activities. The effort was greater to complete them.

SBES ’21, September 27-October 1, 2021, Joinville, Brazil

Martins et al. [24] investigated the impact of code smells co-
occurrences in the internal quality attributes in 3 Java closed-source
systems. The authors identified which are the co-occurrences to be
removed according to the developers’ perspective. As a result, it was
identified that God Class-Long Method and Disperse Coupling-Long
Method are the most frequent co-occurrences in the three systems
and also the most difficult co-occurrences to refactor in developers’
perspective. Besides, removing these smells harms the cohesion and
coupling attributes and suggests a significant decrease in the com-
plexity of the systems. All previous studies analyze the impact of
co-occurrences for some quality factor. However, none of the works
identifies the most harmful co-occurrences taking into account the
effort to remove these co-occurrences by the developers.

7 CONCLUSION AND FUTURE WORK

Our study considered 6 types of code smells and their co-occurrences
in 5 Java closed-source systems and 4 internal quality attributes
(cohesion, inheritance, coupling, and complexity). As the main goal
of our study: (i) we investigated the impact of removing these
smells co-occurrences for internal quality attributes and the most
harmful code smell co-occurrences in these systems; (ii) we also
identified the most harmful code smell co-occurrences from the
developer’s perspective; and (iii) we analyzed the main difficulties
and perceptions of developers during the removal of code smell
co-occurrences. Removing these co-occurrences of code smells took
3 months and happened at different times for each system. Were
made in the study a total of 420 refactoring commits, and 14 de-
velopers removed 82 co-occurrences. During the entire process of
removal co-occurrences via refactoring, we instruct developers to
document their perceptions using the diary technique.

Our main findings were: (i) the removal of Disperse Coupling-
God Class and God Class-Long Method has improved all internal
quality attributes; (ii) developers should pay attention to remove
and avoid the introduction of Dispersed Coupling—God Class, Fea-
ture Envy—God Class and God Class—Long Method co-occurrences
during the software development; (iii) one of the main difficul-
ties for developers is to understand the source code that contains
co-occurrences; and, (iv) the developers still have insecurities re-
garding the identification and refactoring of code smells and their
co-occurrences. The finding (iv) is interesting because removing
certain co-occurrences improved the software quality, and thus con-
firms the observation of prior studies on the removal of code smell
co-occurrences [13, 24, 50]. As future work, we intend to: (i) analyze
the co-occurrence in open-source systems; (ii) reproduce the study
with tools that detect other code smells; (iii) reproduce the study
with systems written in other programming languages; (iv) study
the co-occurrence phenomenon of code smells in android; and, (v)
use automatic refactoring to remove code smells co-occurrences.

Acknowledgements. This work was partially funded by CNPq
(434969/2018-4,312149/2016-6, 141285/2019-2), FAPER] (200773/2019,
010002285/2019), and CAPES/Procad (175956).

REFERENCES

[1] Walid Abdelmoez, Essam Kosba, and Ali Falah Iesa. 2014. Risk-based code smells
detection tool. In The International Conference on Computing Technology and
Information Management (ICCTIM). Society of Digital Information and Wireless
Communication, 148.

SBES °21, September 27-October 1, 2021, Joinville, Brazil

[2

[

[10

[11]

[12]

[13

[14]

[15

[16]

[17]

[18

[19]

[20

[21]

[22

[23]

[24]

[25

[26

[27]

Chaima Abid, Vahid Alizadeh, Marouane Kessentini, Thiago do Nascimento
Ferreira, and Danny Dig. 2020. 30 Years of Software Refactoring Research: A
Systematic Literature Review. arXiv preprint arXiv:2007.02194 (2020).

Ana Carla Bibiano, Vinicius Soares, Daniel Coutinho, Eduardo Fernandes, Jodo Lu-
cas Correia, Kleber Santos, Anderson Oliveira, Alessandro Garcia, Rohit Gheyi,
Baldoino Fonseca, Marcio Ribeiro, Caio Barbosa, and Daniel Oliveira. 2020. How
Does Incomplete Composite Refactoring Affect Internal Quality Attributes?. In
28th ICPC. 149-159.

James M Bieman and Byung-Kyoo Kang. 1995. Cohesion and reuse in an object-
oriented system. ACM SIGSOFT Software Engineering Notes 20, SI (1995), 259-262.

Alexander Chévez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and
Alessandro Garcia. 2017. How does refactoring affect internal quality attributes?:
A multi-project study. In 31st SBES. ACM, 74-83.

Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng. 20, 6 (1994), 476-493.

Rafael de Mello, Anderson Uchoa, Roberto Oliveira, Willian Oizumi, Jairo Souza,
Kleyson Mendes, Daniel Oliveira, Baldoino Fonseca, and Alessandro Garcia. 2019.
Do research and practice of code smell identification walk together? a social
representations analysis. In 13th ESEM. 1-6.

Rafael Maiani de Mello, Anderson Gongalves Uchoa, Roberto Felicio Oliveira,
Daniel Tendrio Martins de Oliveira, Baldoino Fonseca, Alessandro Fabricio Garcia,
and Fernanda de Barcellos de Mello. 2019. Investigating the social representations
of code smell identification: a preliminary study. In 12th CHASE. 53-60.

Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and Marcelo de Almeida Maia.
2018. A systematic literature review on bad smells—5 W’s: which, when, what,
who, where. IEEE Trans. Softw. Eng. (2018).

Giuseppe Destefanis, Steve Counsell, Giulio Concas, and Roberto Tonelli. 2014.
Software metrics in agile software: An empirical study. In International Conference
on Agile Software Development. Springer, 157-170.

Eduardo Fernandes, Alexander Chavez, Alessandro Garcia, Isabella Ferreira,
Diego Cedrim, Leonardo Sousa, and Willian Oizumi. 2020. Refactoring Effect on
Internal Quality Attributes: What Haven’t They Told You Yet? Inf. Softw. Technol.
(2020), 106347.

Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A review-based comparative study of bad smell detection tools.
In 20th EASE. ACM, 18.

Eduardo Fernandes, Gustavo Vale, Leonardo Sousa, Eduardo Figueiredo, Alessan-
dro Garcia, and Jaejoon Lee. 2017. No Code Anomaly is an Island. In 16th ICSR.
Springer, 48-64.

Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

César Franga, Fabio Q. B. da Silva, and Helen Sharp. 2020. Motivation and
Satisfaction of Software Engineers. IEEE Transactions on Software Engineering 46,
2 (2020), 118-140. DOI : https://doi.org/10.1109/TSE.2018.2842201

Amandeep Kaur and Gaurav Dhiman. 2019. A review on search-based tools and
techniques to identify bad code smells in object-oriented systems. In Harmony
search and nature inspired optimization algorithms. Springer, 909-921.

Satnam Kaur and Paramvir Singh. 2019. How does object-oriented code refactor-
ing influence software quality? Research landscape and challenges. J. Syst. Softw.
157 (2019), 110394.

Sharanpreet Kaur and Satwinder Singh. 2016. Spotting & eliminating type check-
ing code smells using eclipse plug-in: Jdeodorant. International Journal of Com-
puter Science and Communication Engineering 5, 1 (2016).

Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaél Guéhéneuc.
2020. Code smells and refactoring: a tertiary systematic review of challenges and
observations. F. Syst. Softw. (2020), 110610.

Michele Lanza and Radu Marinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

Mark Lorenz and Jeff Kidd. 1994. Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc.

Angela Lozano, Kim Mens, and Jawira Portugal. 2015. Analyzing code evolution
to uncover relations. In 2nd PPAP. IEEE, 1-4.

Ruchika Malhotra and Anuradha Chug. 2016. An empirical study to assess the
effects of refactoring on software maintainability. In International Conference
on Advances in Computing, Communications and Informatics (ICACCI). IEEE,
110-117.

Julio Martins, Carla Bezerra, Anderson Uch6a, and Alessandro Garcia. 2020. Are
Code Smell Co-Occurrences Harmful to Internal Quality Attributes? A Mixed-
Method Study. In 34th SBES (SBES '20). Association for Computing Machinery,
New York, NY, USA, 52-61. DOI:https://doi.org/10.1145/3422392.3422419

Julio Martins, Carla Ilane Moreira Bezerra, and Anderson Uchda. 2019. Analyzing
the Impact of Inter-smell Relations on Software Maintainability: An Empirical
Study with Software Product Lines. In 15th SBSIL. 1-8.

Thomas] McCabe. 1976. A complexity measure. IEEE Trans. Softw. Eng. 4 (1976),
308-320.

Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE Trans.
Softw. Eng. 30, 2 (2004), 126-139.

(28]

[29

@
=

[31

[32

[33

[34

(35]

[36

[37

@
&,

[39

[40

[41

=
)

[43

(44

[45

[48

[49

[50

[51

Martins et al.

Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo, and
Yixue Zhao. 2016. Code anomalies flock together: Exploring code anomaly
agglomerations for locating design problems. In 38th ICSE. IEEE, 440-451.
Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle
of code smell co-occurrences. Inf. Softw. Technol. 99 (2018), 1-10.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empir. Softw.
Eng. 23,3 (2018), 1188-1221

Fabio Palomba, Rocco Oliveto, and Andrea De Lucia. 2017. Investigating code
smell co-occurrences using association rule learning: A replicated study. In 2nd
MaLTeSQuE. IEEE, 8-13.

Jeremy R Pate, Robert Tairas, and Nicholas A Kraft. 2013. Clone evolution: a
systematic review. Journal of software: Evolution and Process 25, 3 (2013), 261-283.
Blazej Pietrzak and Bartosz Walter. 2006. Leveraging code smell detection with
inter-smell relations. Extreme Programming and Agile Processes in Software
Engineering (2006), 75-84.

Cristiano Politowski, Foutse Khomh, Simone Romano, Giuseppe Scanniello, Fabio
Petrillo, Yann-Gaél Guéhéneuc, and Abdou Maiga. 2020. A large scale empiri-
cal study of the impact of Spaghetti Code and Blob anti-patterns on program
comprehension. Inf. Softw. Technol. 122 (2020), 106278.

José Amancio M Santos, Jodo B Rocha-Junior, Luciana Carla Lins Prates,
Rogeres Santos do Nascimento, Mydia Falcao Freitas, and Manoel Gomes de
Mendonga. 2018. A systematic review on the code smell effect. . Syst. Softw. 144
(2018), 450-477.

Vinicius Soares, Anderson Oliveira, Juliana Alves Pereira, Ana Carla Bibano,
Alessandro Garcia, Paulo Roberto Farah, Silvia Regina Vergilio, Marcelo Schots,
Caio Silva, Daniel Coutinho, and others. 2020. On the Relation between Com-
plexity, Explicitness, Effectiveness of Refactorings and Non-Functional Concerns.
In 34th SBES. 788-797.

Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro
Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, and others. 2018. Identifying design problems in the source
code: A grounded theory. In 40th ICSE. 921-931.

Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research: a critical review and guidelines. In 38th ICSE.
120-131.

Amjed Tahir, Aiko Yamashita, Sherlock Licorish, Jens Dietrich, and Steve Counsell.
2018. Can you tell me if it smells? A study on how developers discuss code smells
and anti-patterns in Stack Overflow. In 22nd EASE. 68-78.

Sandhya Tarwani and Anuradha Chug. 2016. Sequencing of refactoring tech-
niques by Greedy algorithm for maximizing maintainability. In Proceedings of
the International Conference on Advances in Computing, Communications and
Informatics (ICACCI). IEEE, 1397-1403.

Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.
Ten years of JDeodorant: Lessons learned from the hunt for smells. In 25th SANER.
IEEE, 4-14.

Anderson Uchoa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wesley KG
Assungao, Silvia Regina Vergilio, Juliana Alves Pereira, Anderson Oliveira, and
Alessandro Garcia. 2021. Predicting Design Impactful Changes in Modern Code
Review: A Large-Scale Empirical Study. In 18th MSR. IEEE, 1-12.

Anderson Uch6a, Eduardo Fernandes, Ana Carla Bibiano, and Alessandro Garcia.
2017. Do Coupling Metrics Help Characterize Critical Components in Component-
based SPL? An Empirical Study. In 5th VEM. 36-43.

Anderson Uchoéa. 2021. Unveiling Multiple Facets of Design Degradation in
Modern Code Review. In 29th ESEC/FSE. 1-5.

Anderson Uchda, Caio Barbosa, Willian Oizumi, Publio Blenilio, Rafael Lima,
Alessandro Garcia, and Carla Bezerra. 2020. How Does Modern Code Review
Impact Software Design Degradation? An In-depth Empirical Study. In 36th
ICSME. 1 - 12.

Santiago A Vidal, Claudia Marcos, and] Andrés Diaz-Pace. 2016. An approach
to prioritize code smells for refactoring. Automated Software Engineering 23, 3
(2016), 501-532.

Bartosz Walter, Francesca Arcelli Fontana, and Vincenzo Ferme. 2018. Code
smells and their collocations: A large-scale experiment on open-source systems.
7. Syst. Softw. 144 (2018), 1-21.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 20th WCRE. IEEE, 242-251.

Aiko Yamashita and Leon Moonen. 2013. Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In 35th ICSE. IEEE,
682-691.

Aiko Yamashita, Marco Zanoni, Francesca Arcelli Fontana, and Bartosz Walter.
2015. Inter-smell relations in industrial and open source systems: A replication
and comparative analysis. In 31st ICSME. IEEE, 121-130.

https://doi.org/10.1109/TSE.2018.2842201
https://doi.org/10.1145/3422392.3422419

	Abstract
	1 Introduction
	2 Background
	2.1 Code Smells
	2.2 Code Smell Co-occurrences
	2.3 Internal Quality Attributes

	3 Study Settings
	3.1 Goal and Research Questions
	3.2 Study Steps
	3.3 Experimental Procedures

	4 Results and Discussion
	4.1 Co-occurrences of Code Smells that are more harmful to quality attributes (RQ1)
	4.2 Most Harmful Co-occurrences from the Developers' Perspective (RQ2)
	4.3 Main Difficulties Faced by Developers During the Co-occurrences Removal (RQ3)

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

