
Enhancing Recommendations of Composite
Refactorings based on the Practice

Ana Carla Bibiano∗, Daniel Coutinho∗, Anderson Uchôa†, Wesley K. G. Assunção‡, Alessandro Garcia∗,
Rafael de Mello§, Thelma E. Colanzi¶, Daniel Tenório∗, Audrey Vasconcelos∥, Baldoino Fonseca∥, Márcio Ribeiro∥.

∗Pontifical Catholic University of Rio de Janeiro, Brazil. †Federal University of Ceará, Brazil.
‡North Carolina State University, USA. §Federal University of Rio de Janeiro, Brazil.

¶State University of Maringá, Brazil. ∥Federal University of Alagoas, Brazil.

Abstract—Refactoring is a non-trivial maintenance activity.
Developers spend time and effort refactoring code to remove
structural problems, i.e., code smells. Recent studies indicated
that developers often apply composite refactoring (composite, for
short), i.e., two or more interrelated refactorings. However, prior
studies revealed that only 10% of composite refactorings are
considered complete, i.e., those fully removing code smells. Many
incomplete refactorings can even replace or introduce smells,
requiring additional effort for their removal later in the project.
Moreover, existing refactoring recommendations are not well-
detailed and do not alert developers about these possible side
effects. To address these gaps, we conducted a large-scale study
involving more than 250k refactorings from 42 software projects,
including both open-source and closed-source projects. Our goal
is to investigate how the most common complete composites are
combined and their side effects in the practice. Our results reveal
that the current recommendation to apply Extract Method(s)
with fine-grained refactoring types needs refinements. We found
that certain fine-grained refactorings like Change Variable Types
and Change Return Types can introduce up to 45% of Brain
Methods when combined with Extract Method(s). Moreover, Ex-
tract Method(s) and Move Method(s), a common recommendation
to remove Feature Envy, may inadvertently introduce about 30%
of Lazy Classes and approximately 70% of Data Classes. Despite
these potential side effects, existing refactoring catalogs and tools’
recommenders do not alert developers about these side effects.
Finally, we consolidate our findings into a catalog to provide clear
guidance for developers and researchers on effectively applying
composite refactorings to fully remove code smells.

Index Terms—software refactoring, code smells, refactoring
recommendations, mining software repositories

I. INTRODUCTION

Developing software projects with high design quality is the
goal of every company [1], [2]. However, due to extensive
maintenance and evolution in those projects, the internal
software quality usually decays and degrades [3], [4], [5].
Internal quality problems are known as code smells [6]. A
code smell is a symptom of bad design or poor implementation
choice in the source code of a software system that possibly
indicates a deeper problem [6]. These symptoms have a
negative influence on software quality regarding maintainabil-
ity, understandability, and testability. Thus, developers must
identify and remove code smells as soon as possible [6], [7]. A
well-known and widely used practice to deal with code smells
is code refactoring [8]. Code refactoring aims at improving
the structure of the software, removing code smells, without

changing its external behavior [6]. Developers apply code
refactoring intending to fully remove code smells, even when
refactorings are applied with non-refactoring changes [9].

Despite its benefits, refactoring is a non-trivial activity. To
apply refactoring, developers must: (i) identify where to refac-
tor, (ii) know what refactoring type(s) to apply, and (iii) an-
alyze both the beneficial and harmful effects of refactoring
on the source code. In the first step, smelly code is often the
target of refactorings [10]. In the second step, developers often
have to combine refactorings [11], [12] through composite
refactorings. A composite refactoring (composite, for short),
is formed by two or more interrelated single refactorings [13],
[14], [15]. The application of composites is a complex and
error-prone task, as the smelly code is often modified in
multiple parts by different refactoring types combined [13]. To
make matters worse, studies have indicated that composites are
generally applied manually [11], [16] and often combined with
other code changes [11], [13]. Yet, studies indicate that only
10% of composites could remove code smells entirely [12],
[13], even when refactoring is the primary goal. Composites
are expected to remove at least the target code smells. For
instance, Extract Method(s) and Move Method(s) are often
indicated to remove Feature Envy [6], [13]. Thus, the Feature
Envy is the target smell for a composite formed by these
refactoring types. We refer here to a composite able to fully
remove target code smells as complete composite refactor-
ings [17] (see Section II). In that way, if Extract Method(s)
and Move Method(s) fully remove the target Feature Envy,
then this composite is complete.

As a way to support developers in performing refactorings,
some IDEs, such as Eclipse or IntelliJ, attempt to automate
this activity. Unfortunately, when it comes to the application
of composite refactorings, developers have to do it manually
due to the limitations of existing tools. For instance, Kim et
al. [16] reported that Microsoft developers needed to create
refactoring solutions to support the Windows 7 development.
There are two main reasons why developers rarely use IDE
functionalities to perform refactorings: (i) the existing tools
only recommend isolated refactorings, and (ii) they do not
show the possible (side) effects of the refactoring, since previ-
ous work shows that refactorings may inadvertently introduce
code smells even more severe than those removed ones [18].

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works. To be published in the Proceedings of the 24th IEEE International
Conference on Source Code Analysis and Manipulation (SCAM), 2024 in Flagstaff, Arizona, USA.

Researchers have explored approaches to contribute to
refactoring applications for many years [19]. Despite the
advances in both the state of the art and the practice, there
are still limitations to providing proper support for developers.
The first limitation is that existing recommendations are not
well-detailed, neglecting some of the refactoring types to be
combined and when refactoring may be applied. For instance,
Bibiano et al. [17] recommend Extract Methods and “fine
granularity refactorings” or “fine-grained refactorings” (i.e.,
code transformations on variables and attributes) to remove the
Long Method smell. However, they do not detail which fine-
grained refactorings may be applied and how these refactorings
can help to remove a Long Method in conjunction with an
Extract Method, reducing the applicability of their findings.

The second limitation is the lack of information about
the side effects of composite refactoring recommendations.
Bibiano et al. also reported that complete composites may have
side effects like the introduction or propagation of code smells.
Despite indicating side effects for some complete composites,
the authors do not perform an in-depth empirical analysis of
side effects for complete composites. Another example of this
can be found in the catalog of Brito et al. [20], where there
is a recommendation for using Pull Up Methods to create a
single and more general method in the superclass, leveraging
code reuse. However, Brito et al. do not alert developers about
the side effects of Pull Up Methods.

To effectively support developers in applying refactorings,
our study focuses on gaining knowledge from the practice of
composite refactorings. Thus, the goals of this study are three-
fold: (i) explore the most common combinations of refactoring
types in complete composite refactorings, (ii) discover side
effects of existing recommendations of complete composites,
and (iii) enhance existing recommendations of complete com-
posite refactorings to overcome our results.

Aimed at study goals, we conducted a large-scale study
on 42 open and closed-source Java projects. We collected
31,066 composites (composed of 250,172 single refactorings)
from which we identified 1,397 complete composites. These
composites are used to address 17 different types of code
smells. We also identified the most frequent combinations
within complete composites applied in the practice and the
side effects of those complete composites. From these results,
we created our catalog of composite recommendations. Our
results show that (but not limited to):

• Extract Methods and Move Methods are commonly rec-
ommended to remove Feature Envy. In fact, about 74%
of Feature Envies were removed by Extract Methods and
Move Methods. However, about 30% of Lazy Classes and
about 70% of Data Classes can be introduced after the
application of these extractions and motions of methods.
However, the current studies found in the literature do
not alert about these side effects. In our catalog, we
included these side effects and justified them because
these side effects can directly benefit developers and
researchers [17].

• Developers frequently combine Change Variable Type
or Change Parameter Type, when extracting methods
to remove Long Methods, Feature Envies, and Dupli-
cated Code. However, Brain Methods are often (45%)
introduced due to these composites. In this case, we
identified a recommendation of a complete composite
composed of Extract Methods and Change Parameter
Types (49%) that can fully remove these smells without
introducing Brain Methods. This result shows that the
existing recommendation of Extract Method(s) combined
with fine-grained refactorings [17] cannot be considered
a general solution for eliminating code smells, as some
combinations may negatively impact software quality by
introducing side effects, like Brain Methods.

Our study contributes to the practice by providing a more
complete catalog with concrete recommendations to guide
developers on applying complete composites. Also, our catalog
clearly describes potential side effects, allowing developers
to make more informed decisions on how to refactor their
code. Finally, our findings can be a source of information for
tool builders and researchers to create tools that adhere to
the actual practice. Existing state-of-the-art refactoring recom-
menders [21], [22] neglect fine-grain refactorings, which were
frequently present in complete composite recommendations.

II. BACKGROUND AND PROBLEM STATEMENT

This section describes the main concepts, and existing
limitations regarding complete composite refactorings.

A. Composite Refactoring (or Composite)

A single refactoring rarely removes a code smell in prac-
tice [18]. Developers very often need to apply composite
refactorings to eliminate the incidence of some code smell
types [23]. A composite refactoring is a set of interrelated
refactorings, defined as c = {r1, r2, ...rn}, where each r is a
single refactoring and i is an identifier for each refactoring
applied [13]. A composite c can be formed of the same
refactoring type, or a combination of different refactoring
types [12], [13], [24], [25], [26], [27].

A recent study proposed a range-based heuristic [13] for
composite detection. For that, the heuristic considers as com-
posite those refactorings applied by the same developer and
affecting the same code elements, known as the refactoring
range. The reliability of this heuristic was demonstrated in
several studies [13], [14], [17]. This heuristic also enables one
to identify the smell(s) in the composite range being targeted
by the interrelated refactorings.

Similar studies also indicate that developers often apply
composites manually [12], [13], [23]. Additionally, related
studies found that composites frequently result in undesirable
side effects [12], [13]. A side effect is when a code smell is
introduced or kept after the application of a composite refac-
toring. Based on existing literature, we observe that (i) there is
a lack of knowledge, and consequently tooling support, on the
best alternatives of composites for effectively removing code
smells; and (ii) there is a misguidance of automated support for

developers applying composites, potentially leading to worse
internal quality due to side effect of some refactorings.

Aiming at fulfilling the gaps described above, we investi-
gated the completeness of composite refactorings, a concept
described in the next section. Therefore, a deeper understand-
ing of composites is needed to support developers’ decisions
and tool builders on advancing the practice of refactoring,
which is the main motivation of our work.

B. Completeness of Composite Refactorings

Recent studies recommend composites to remove a single
code smell type, typically referred to as the target smell of
a composite [17]. For instance, a recent study recommends
applying Extract Method(s) combined with Move Method(s) to
remove Feature Envy [13]. Thus, a Feature Envy is the target
smell in such cases. Alternatively, Composite Completeness
is a characteristic given to those composites able to achieve the
full removal of the target code smells [17] as defined below:

Completeness of Composite Refactoring: Considering ri
as a single refactoring, and c is a composite refactoring. For
each ri ∈ c, ri transforms a code element e, such as a method
or/and class. We then have ∀e that has a code smell s, and
SUMBEFORE(s) is the sum of all target code smells before
the application of a composite refactoring c, SUMAFTER(s)

is the sum of all target code smells after the application of a
composite refactoring c. A composite refactoring is complete
when SUMAFTER(s) < SUMBEFORE(s)

Based on the principle that the main goal of refactorings is
to improve the overall internal quality of the software system,
mainly removing code smells, an in-depth investigation of the
completeness of composites is necessary. Developers often
spend time and effort applying composite refactorings to
combat code smell incidences. However, this improvement
(i.e., better internal quality due to code smell removal) is
frequently not perceived in the practice [13], [14].

Researchers have investigated the recommendation of com-
plete composites [12], [13], [17], [20]. Even though existing
work have contributed to the field of composite refactoring,
existing recommendations do not guide developers on how and
when to apply them. For instance, Bibiano et al. [17] recom-
mend applying Extract Method and Move Method combined
with fine-grained refactorings for removing Feature Envy, but
they do not recommend which fine-grained refactorings should
be applied and applying the recommendations.

C. Fine-Grained and Coarse-Graine Refactorings

A refactoring of fine granularity, or a fine-grained refac-
toring (FGR), is a minor code transformation directly on
variables or attributes. This transformation can be a change
of variable type, a merge between two or more variables.
Some fine-grained refactorings can indirectly involve multiple
classes, like Pull Up Attribute or Push Down Attribute, but the
code transformation is directly on the attribute. A refactoring
of large granularity, or coarse-grained refactoring (CGR), is
a code transformation that involves directly method(s) or

TABLE I
CLASSIFICATION OF REFACTORING TYPES

Fine-Grained (FGR) Coarse-Grained (CGR)
Move Attribute Rename Variable Inline Method
Pull Up Attribute Rename Parameter Rename Method
Push Down Attribute Replace Variable Move Method
Rename Attribute Merge Variable Pull Up Method
Replace Attribute Change Return Type Push Down Method
Extract Attribute Change Parameter Type Extract Class
Merge Attribute Change Variable Type Extract Subclass
Split Attribute Merge Parameter Extract Superclass
Extract Variable Split Variable Move Class
Inline Variable Replace Variable With Attribute Rename Class
Parameterize Variable Extract Interface
Split Parameter Extract Method

Total: 22 Total: 12

class(es). Common examples of CGR are Extract Method,
and Move Method. In this study, we considered the term
“coarse-grained” to better align with the term “fine-grained”.
Table I shows the refactoring types classified in FGR and
CGR. We used this classification of refactoring types because
although there are many fine-grained types of refactorings. We
observed that FGR were not investigated by previous studies
that recommend complete composite refactorings [13], [20].

D. Limitations of Existing Recommendations of Complete
Composite Refactorings

Table II summarizes existing recommendations for complete
composites. The table presents, respectively, the complete
composites that may be applied; the existing smells before
the composite; the target smell to be removed; the expected
effect after applying the composite; and the side effects of
complete composites. We argue that these recommendations
have two main limitations. The first one is that the existing
recommendations are not well-detailed, mainly about which
refactoring types may be applied over certain circumstances
and when. For instance, Bibiano et al. [17] recommend Extract
Methods and fine-grained refactoring to remove Long Method.
However, they did not detail which fine-grained refactorings
should be applied and how the refactorings help to remove a
Long Method in conjunction with an Extract Method.

The second limitation is the side effects of these recommen-
dations. Bibiano et al. [17] reveal that complete composites
may lead to side effects like introducing or propagating the
incidence of code smells. However, the authors discuss only
the side effects surrounding just some recommendations of
complete composites. Brito et al. [20] recommend Pull Up
Methods to create a single and more general method in the su-
perclass, achieving code reuse. On the other hand, they did not
alert developers about the side effects of Pull Up Methods in
practice. An example of a side effect is methods with Feature
Envy or Long Method that may have these smells propagated
to the superclass after the Pull Up Methods. Therefore, we
must overcome these limitations to guide developers on how
and when to apply each recommendation.

III. MOTIVATING EXAMPLE

For the motivating example, we rely on a code fragment of
the Apache Ant project in which we identified the incidence

TABLE II
EXISTING RECOMMENDATIONS OF COMPLETE COMPOSITES

Complete Composites Existing
Smells

Target Smell Effect Side effect

Extract Methods, Move Method(s) and
Fine-Grained Refactorings [17]

Long Method,
Feature Envy

Feature Envy Removal of Feature Envy, Long
Method

Introduction of Feature
Envy(s)

Extract Method and Fine-Grained
Refactorings [17]

Long Method,
Feature Envy

Long Method Removal of Long Method Introduction of Feature Envy
and Long Parameter List

Move Method(s) [17] Feature Envy Feature Envy Removal of Feature Envy -
Move Method(s) [20] - - Improvement of cohesion and coupling -
Extract Methods, Move Method [20] - Duplicated Code Promotion of reuse and removing du-

plication
-

of four different code smell types in the same method called
copyWithFilterSets, shortly copyWFS. The method
copyWFS is responsible for copying a resource based on
several filters. The observed smells are Long Method, Fea-
tureEnvy, Duplicated Code, and Long Parameter List. This
method was refactored in the commit b7d1e9bde44c [28],
represented on the right in Figure 1.

The Long Method and Duplicated Code smells are
expressed by the several lines of duplicated code ad-
dressing the parameter filterChains. The method
copyWFS had some code fragments duplicated with the
method copyWithFilterChainsOrTranscoding (or
copyWFCT) from the same class. The excessive duplication
resulted in an unnecessarily complex and too-long method.
The incidence of Feature Envy is due to the recurrent calls
to external methods from the class ChainHeaderHelper.
Finally, the method signature has eight parameters, indicating
the incidence of a Long Parameter List.

class ResourceUtils{

copyWFS(...,Vector filterChains)

 …
}

class ResourceUtils{

copyWFS(...,Vector<FilterChain>
filterChains)

filterWith(...)

…
}

Long Method
Duplicated Code
Feature Envy
Long Parameter List

Extract
Method

Change
Parameter

Type

Fig. 1. Code smells in the commit af74d1f6b882 [29] (on the left), and
the refactoring applied in the commit b7d1e9bde44c [28] (on the right).

In the presented commit, the developer opted for ap-
plying a composite refactoring formed by Extract Method
and Change Parameter Type. With the Extract Method,
the developer created a method called filterWith. The
Change Parameter Type was applied over the parameter
filterChains from the method copyWFS. In this case, the
developer changed the original data type of FilterChains
to Vector<FilterChains>. Consequently, these refac-
torings fixed the incidence of Long Method and Duplicated
Code in the class. The change of the parameter type led to
the removal of some duplicated lines, while the new method
filterWith received other duplicated lines. Besides, now
both methods copyWFS and copyWFCT are using the ex-

tracted method. However, the composite applied did not fully
solve the incidence of Feature Envy once this smell was
moved to the extracted method. Besides, one may see that
the copyWFS method remains with a Long Parameter List.

From this example, we can observe that the developer
applied a composite in a method with multiple instances of
code smells, but this composite may be considered incom-
plete, since it was insufficient to remove all smells previ-
ously identified. This phenomenon, frequently observed in
the practice during our study, suggests that developers may
benefit from hands-on guidelines for supporting the complete
removal of multiple code smells. Without that, developers tend
to rely only on their intuition and experience for analyzing
and deciding which refactoring strategies they should follow.
Consequently, developers may have more difficulty identifying
the best options for composite refactorings considering their
impact on the code structure, including its side effects.

The technical literature proposes some recommendations to
guide developers to remove certain smell types [17], [20],
[30]. For instance, Bibiano et al. [17] and Chavez et al. [30]
recommend combining Extract Method and Move Method for
removing Feature Envy and Long Method. However, these
studies do not take into account side effects when applying
these refactorings in a complex scenario that includes other
smell types. For instance, the application of Extract Method
may be effective to mitigate or remove the Long Method.
However, the creation of a new method may propagate other
smells, such as the FeatureEnvy and the Long Parameter List
once the new method can inherit bad practices, such as the
excessive number of parameters and external method calls,
from the source method. These side effects especially occur
when the developers are unaware of the incidence of other
smell types in the source code analyzed.

In summary, we see the need for recommendations aligned
with the practice and considering potential effects and side
effects. Thus, it is necessary to investigate concrete cases in
which code smells are introduced, which is the goal of our
study described in the next section.

IV. STUDY SETTINGS

Our study aims to enhance and assess the recommendations
of complete composite refactorings to be used in practice.
Aiming at conceiving this enhancement, we consolidate the
previous empirical-driven recommendations [17], [20] and

extract knowledge from complete composites applied in 42
real software projects. Regarding their latter, we collected the
frequent combinations forming complete composites applied
in practice and their side effects, improving the existing
recommendations. In this section, we describe our research
questions (RQs) and the steps of our study.

RQ1: What are the most frequent combinations in complete
composite refactorings in practice? – RQ1 aims at identifying
and analyzing the most frequent refactoring combinations
in complete composites. We consider two aspects: (i) the
frequency in which each combination appears as a whole; and
(ii) the fine-grained refactoring types that appear the most in
frequent complete composites (as explained in Section II-D).
Additionally, our analysis helps us understand the actual
contribution of each refactoring type (e.g., Extract Method
and Move Method) on the complete introduction or removal of
code smells. From these observations, we can improve existing
recommendations and suggestions derived from practice.

RQ2: What are the side effects of the most frequent complete
composite refactorings? – Complementary to the previous
research question, RQ2 aims to identify the side effects of
the most frequent complete composite refactorings in terms of
introduction, removal, and prevalence of code smells. Addi-
tionally, we analyze the propagation of code smells, i.e., when
an existing code smell is moved to other parts of the source
code. By answering RQ2, we can derive a clear understanding
of the side effects of the most frequent complete composite
refactorings. This understanding is of paramount importance
to avoid misinforming developers on refactorings that may not
remove smells effectively. As composites also aim to improve
design quality, the application of a complete composite should
ideally remove smells, as intended by developers, without
creating smells in other parts of the codebase.

A. Study Steps and Procedures

Figure 2 illustrates our study steps and dataset. Study steps
are mainly related to the data collection and analyses. The
replication package is available in [31].

Step 1: Software Project Selection. We selected 42 soft-
ware projects from GitHub according to the following criteria:
(i) the software project must be implemented in Java due to
the availability of robust tools for software analysis; (ii) the
software project must use Git as the main version control
system because state-of-the-art tools for refactoring detection
work on Git projects only; and (iii) the software project must
have been investigated by at least one related study regarding
refactoring [13], [17], [20], [25]. Previous studies reported
software communities that have a refactoring culture in some
software projects [13], [17], [20], [25], which is relevant
because it shows developers’ concerns about refactoring.

Step 2: Single Refactoring Detection. For detecting single
refactorings applied in practice, we used the RefMiner 2.0
tool [32] due to its high precision and recall levels (98%
and 87%, respectively). Besides, the tool supports a total
of 52 refactoring types [33]. In this study, we considered
34 refactoring types that are applied in the code scope of

TABLE III
CODE SMELL TYPES ANALYZED IN THIS STUDY

Code Smell Type ID Definition
Method level

Brain Method BrM Method overloaded with software features
Dispersed Coupling DsC Method that calls too many methods
Feature Envy FeE Method “envying” other classes’ features
Intensive Coupling InC Method that depends much on other ones
Long Method LoM Too long and complex method
Long Parameter List LPL Too many parameters in a method
Message Chain MeC Too long chain of method calls
Shotgun Surgery ShS Method whose changes affect other ones

Class level
Brain Class BrC Class overloaded with software features
Class Data should be Private CDSBP Class that overexposes its attributes
Complex Class CoC Too complex software features in a class
Data Class DaC Only data management features in a class
God Class GoC Too many software features in a class
Lazy Class LaC Too short and simple class
Refused Bequest ReB Child class rarely uses parent class features
Spaghetti Code SpC Too much code deviation and nesting
Speculative Generality SpG Useless abstract class

attributes, methods, and classes. A recent study [17] showed
that fine-grained refactoring types are often applied in com-
plete composites. Table I summarizes the 34 refactoring types
investigated in our work.

Step 3: Composite Refactoring Computation. For the
detection of composite refactorings, we created a script based
on the range-based heuristic. As mentioned in Section II-A
this heuristic captures refactorings that were applied on a
common set of code elements (classes and/or methods) and
implemented by the same developer. In that way, we can
capture the developer’s intent to improve the internal software
quality of this set of code elements from a composite. Thus,
this heuristic best fits our study goal, since it considers
multiple code elements. The reliability of this heuristic was
demonstrated in [13], [14], [17]. More details about the range-
based heuristic are available in [13]. Our script was developed
in Java, being tested and validated by two authors. This script
can detect composites formed by refactorings applied in an
isolated class or multiple classes, as expected by the range-
based heuristic [13]. We better detailed our script on [31].

Step 4: Code Smell Detection. Similarly to Bibiano
et al. [17] and studies that proposed recommendations of
composites [12], [13], we used the Organic tool [34] for
detecting code smells in our study. Organic can detect 17
code smell types. The Organic tool uses detection strategies
based on code metrics to collect code smells. These detection
strategies have already been evaluated by prior studies [18],
[34], [35]. Besides that, the range-based heuristic captures
composites applied on multiple classes. Then, it motivated us
to investigate the effect of complete composites on code smells
that involve multiple classes. Table III lists the 19 code smell
types analyzed in our study.

Step 5: Complete Composite Computation. We focused
on the complete composites for removing the 19 collected
code smell types (Table III). These code smells are very
common and can be removed from refactoring types inves-
tigated in this study. We then elaborated Table II that presents
the recommended composites for the removal of some code

42
projects

Software
Projects
Selection

Single
Refactoring
Detection

 250,172
 refs

Composite
Refactoring

Computation
Code smell
Detection

Complete
Composite

Computation

 31,066
composites

19 code
smell
 types

1,397
 complete

composites

Complete
Composites

Analysis

Catalog of
Composite

Recommendations

Side Effects
Analysis

Dataset
Validation

Fig. 2. Study Steps

smells according to prior studies [17], [20]. However, these
recommendations are limited to the removal of four code smell
types only. Thus, we aim to extend these recommendations to
other code smell types investigated in our study. For the full
removal of code smells, we created a formal definition for
completeness based on a related work [17] (see Section II-B).
We then elaborated a script to collect complete composites
according to our definition. This script was manually tested
and validated by the authors (see details in Section VII).

Step 6: Complete Composite Analysis. Aiming to identify
frequent combinations for composing complete composites,
we created scripts to group complete composites in types.
We follow the definition of composite types presented in [17]
(see Section II-A). We collected the frequent combinations
between groups. An example of that is when we have a group
g1 of composite types formed by g1=[Extract Method(s), Move
Method(s), Change Return Type(s)], and another group g2 =
[Extract Method(s), Change Return Type(s)]. We can observe
that the combination c1=[Extract Method(s), Change Return
Type(s)] is common between these groups g1 and g2.

Step 7: Side Effects Analysis. We collected the side effects
(i.e., code smells introduced, removed, and unaffected) by the
most frequent complete composites identified in the previous
step. Then, three authors manually analyzed the effect of
complete composites. Additionally, we focus on finding the
relation between the introduction of code smells and the com-
plete composites that removed the target code smell. For each
composite, we analyzed the code snippets refactored, other
code changes, the arguments for commit, and pull request
discussions in the commits in which the complete composites
were applied. This in-depth analysis allowed us to understand
whether other code changes could have introduced the code
smell, and if developers knew these code smells. The findings
of this step helped us to complement our catalog with the side
effects of complete composites. We summarized our results
from Steps 6 and 7 in a catalog with recommendations of
common complete composites and their possible side effects.
A summary of this catalog is presented in Section VI.

Step 8: Dataset Validation. We randomly selected a sample
formed by 36 complete composites from our dataset for
validation. Six developers validated whether the composites
were complete for code smells that were detected. For the
validation, we provided a table to the developers with the

following composite data: refactoring types that form each
composite, the project name and the commits where the
composite was applied, the code element names that were
touched for each composite, and the set of code smells of these
code elements before and after the application of composite
refactorings. Each developer had one week to evaluate six
complete composites according to their availability. After this
period, 28 composite refactorings were evaluated: two devel-
opers evaluated six composites, and four developers evaluated
four composites. According to the developers, 24 composites
were complete for at least one code smell that was detected.

V. RESULTS

In this section, we present and discuss our results, high-
lighting the most frequent combinations observed in complete
composite refactorings and their associated side effects.

A. Frequent combinations in Complete Composites (RQ1)
Table IV presents the most frequent combinations in refac-

toring types. We found that three coarse-grained refactoring
types, namely Extract Method, Move Method, and Move Class,
are commonly applied with fine-grained refactoring types.

This table also shows that 132 (28%) out of 462 complete
composites have at least one Extract Method combined with
Change Variable Type(s). We observed that the Change Vari-
able Types and Change Parameter Types help to simplify or
remove some code statements, decreasing lines of code and
minimizing the excessive method calls of external classes.
Thus, these combinations of refactoring types are appropriate
to remove code smells like Long Methods or Feature Envies.

However, it is unclear if these two code smells often coexist
in the same method and commit. To investigate this, we
analyzed the frequency of Long Methods and Feature Envy that
occur in conjunction. We randomly selected 5,000 commits
from 13 software projects in our dataset to investigate the
frequency of methods with these two code smells. In our
sample of 123,100 long methods, our analysis revealed that
60% of the long methods are also envious methods. We
conjecture that developers are usually aware of only one smell,
and even when both smells are known, our analysis shows that
they are not typically addressed together.

Our results also reveal that developers frequently changed
the type of the method return (23%) or parameter(s) (22%)

TABLE IV
MOST FREQUENT COMBINATIONS IN COMPLETE COMPOSITES

#CC with at least one Extract Method = 462
Combination #CC(%)
[Change Variable Type, Extract Method] 132 (28,57%)
[Change Return Type, Extract Method] 107 (23,16%)
[Change Parameter Type, Extract Method] 102 (22,08%)
[Extract Variable, Extract Method] 96 (20,78%)
[Change Return Type, Change Variable Type, Extract Method] 69 (14,93%)

#CC with at least one Move Method = 183
[Change Parameter Type, Move Method] 65 (35,52%)
[Extract Class, Move Method] 64 (34,97%)
[Change Variable Type, Move Method] 53 (28,96%)
[Change Attribute Type, Move Method] 52 (28,42%)
[Change Return Type, Move Method] 47 (25,68%)

#CC with at least one Move Class = 317
[Change Variable Type, Move Class] 91 (28,70%)
[Change Attribute Type, Move Class] 81 (25,55%)
[Change Paramter Type, Move Class] 77(24,30%)
[Change Return Type, Move Class] 63 (19,87%)
[Change Parameter Type, Change Return Type, Move Class] 42 (13,25%)

#CC with at least one Extract Method and Move Method = 62
[Extract Method, Move Method] 62 (100%)
[Change Variable Type, Extract Method, Move Method] 29 (46,77%)
[Change Parameter Type, Extract Method, Move Method] 24 (38,71%)
[Change Return Type, Extract Method, Move Method] 24 (38,71%)
[Extract Variable, Rename, Extract Method, Move Method] 21 (33,87%)

when extracting methods. Besides, we observed that it is not
common to form a composite with Change Parameter Type
and Change Return Type together with the same instance of
Extract Method. Despite these refactoring types being simple,
they can be related to major code changes. In other words,
when developers applied a Change Parameter Type(s) and
Extract Method(s) or changed the return of a method, they
need to update all methods that were calling extracted ones.
Yet, developers need to change the parameter(s) in each call
of the method and also adapt the source code to perform the
method extraction.

Therefore, we noted that developers often apply a single
type of fine-grained refactoring combined with a single coarse-
grained refactoring type. Besides, we observe that the more
frequent fine-grained refactorings in complete composites ad-
dress the changing of data types, including attributes, param-
eters, variables, and returning data. For instance, Table IV
shows that the developers frequently extract methods com-
bined with changing variable types. We may interpret this
decision as a cautious strategy for avoiding the incidence of
side effects and then reducing rework on maintenance. Previ-
ous work revealed that performing multiple and simultaneous
structural modifications leads to the frequent introduction of
new code smell instances in the source code [12].

Finding 1: Developers tend to apply a single type of
coarse-grained refactoring with a single type of fine-
grained refactoring. The fine-grained ones often address
changing data types.

B. Side Effects of the Frequent Combinations in Complete
Composites (RQ2)

Figure 3 presents the smell incidences as side effects over
the most frequent combinations. Figure 3(a) shows how the
incidence of different smell types was affected by refactorings,

combining Extract Method with Change Variable Type. One
would expect this composite refactoring can affect only smells
at the method level, since the main refactoring (i.e., Extract
Method) is a method-level transformation. However, class-
level smells can also be affected through this combination
when the developer changes the variable type. For instance, a
prior study [17] reports that Extract Methods and fine grain
refactorings frequently (75%) introduce Long Parameter Lists
(LPLs). Differently, our results reveal that the combination
Extract Methods and Change Variable Type introduced about
38% of LPLs. This inconsistent result indicates the need for a
deep understanding of the side effects caused by each combi-
nation in complete composites. We understand that this prior
related work generalized the side effects for all combinations
with at least one fine-grained refactoring [17]. However, each
recurring combination has a particular side effect.

As discussed in the previous RQ, developers apply many
code modifications to support a simple combination formed by
coarse and fine-grained refactorings. Generally, such combina-
tions are applied with non-refactoring code changes. This fact
can explain the introduction (50%) of Brain Methods (BrM),
and the prevalence (45%) of Long Methods (LoM). Despite the
developers’ aim to reduce the size and complexity of methods
when extracting code, Brain Methods have been introduced
due to other code modifications related to the change of
variable type, thereby increasing code complexity. The method
size is not reduced as expected, and the Long Methods are not
affected. This analysis leads to another finding of our study.

Finding 2: The complexity of methods tends to increase
when Extract Methods and Change Variable Types are
applied together.

Surprisingly, Move Methods and Change Parameter Types
can be related to the introduction (83%) of Intensive Couplings
(InC), as shown in Figure 3(b). Generally, when a method is
moved, developers tend to introduce more calls to the methods
from other classes. Consequently, some parameters are also
modified because the method uses attributes of other classes,
explaining why Intensive Couplings are frequently introduced.

Figure 3(c) illustrates the side effects of complete com-
posites formed by Extract Method(s) and Change Parameter
Type(s). This combination can effectively remove (49%) Long
Methods, especially those containing duplicated code. As
observed in the motivating example (Section III), developers
changed parameter types to facilitate code statement removal,
and along with Extract Methods, this led to the elimina-
tion of Long Methods and Duplicated Code. However, our
understanding of the relation between Duplicated Code and
Long Methods is limited, as the Organic tool did not identify
Duplicated Methods.

To corroborate our analysis, we utilized PMD CPD [36]
and developed Java scripts to extract duplicated methods
with at least 30 duplicate statements, as per CPD rules. We
analyzed the same set of 123,100 commits analyzed previously
to determine the frequency of duplicated methods that were

Added Removed Not Affected

B
rC

B
rM

C
D
S
B
P

C
oC

D
aC D
iC

F
eE

G
oC In
C

La
C

Lo
M

LP
L

M
eC

R
eB

S
hS

S
pC

S
pG

0%

25%

50%

75%

100%

(a) Extract Method(s), Change Variable
Type(s)

B
rM

C
oC

D
aC D
iC

F
eE

G
oC In
E

In
C

La
C

Lo
M

LP
L

M
eC

R
eB

S
hS

S
pC

S
pG

(b) Move Method(s) and Change
Parameter Type(s)

B
rC

B
rM

C
D
S
B
P

C
oC

D
aC D
iC

F
eE

G
oC In
C

La
C

Lo
M

LP
L

M
eC

R
eB

S
hS

S
pC

S
pG

(c) Extract Method(s) and Change
Parameter Type(s)

B
rC

B
rM

C
oC

D
aC D
iC

F
eE

G
oC In
C

La
C

Lo
M

LP
L

M
eC

S
hS

S
pC

S
pG

(d) Extract Method(s) and Move
Method(s)

Fig. 3. Side Effect of Common Complete Composites

also long in the same commit. However, the occurrence of
these two code smells in conjunction is not frequent (4%),
but developers often fully remove them using Extract Method
and Change Parameter Types. This empirical knowledge can
provide recommendations.

Extract Methods and Move Methods are frequently rec-
ommended to remove Feature Envies [13], [17]. Figure 3(d)
shows that this combination can fully indeed remove 66% of
Feature Envies (FeE). We also observed that about 26% of
Feature Envies are not affected when developers extract and
move methods. In that case, developers need to be aware of
this situation. Composite refactorings formed by extractions
and moves of methods can be related to the introduction of
Long Parameter Lists (38%) and Intensive Coupling (42%).
Bibiano et al. [17] suggested that this combination can in-
troduce long lists of parameters, but they did not report the
proportion of this side effect. Our results revealed that this side
effect is not very frequent in practice, but it can happen. Long
Parameter Lists can be introduced because many variables
are transformed in parameters when methods are extracted,
as suggested by the prior work. Existing recommendations
do not alert about the introduction of Intensive Coupling. A
possible cause of this side effect is the addition of many calls
of methods from other classes when the developer moves a
method, increasing the coupling of the class. This leads us to
the following finding.

Finding 3: The application of Move Methods tends to
increase the coupling of classes, regardless of the full
removal of Feature Envies.

VI. AN ENHANCED CATALOG OF COMPLETE COMPOSITES

Based on our results, we created a catalog of composite
recommendations. The catalog is available online [37], and
examples of its section are presented in Figures 4 to 8.

Previous composite recommendations focused on remov-
ing a single code smell, but our catalog takes a different
approach. Based on our quantitative analyses, we extracted
recommendations by examining code smells that were fully
and frequently removed by the same composite refactoring
pattern. In this sense, we created two new types of code
smell. We called Long Envious Method (see Figure 4), which
occurs when both Long Method and Feature Envy are detected

Fig. 4. Catalog: code smell section.

on the same method. The second type, Long-signed Clone
is the junction of Long Method and Duplicated Code, and
denotes when a method is long and duplicated because one
or more parameters require the application of many repetitive
statements. Subsequently, we retrieved four recommendations
that remove these two new code smell types. Extract Methods
and Move Methods are commonly applied for the removal of
Long Envious Methods. Our catalog suggests two mechanics:
the first involves extraction followed by moving (see Figure 5),
while the second involves extraction and moving at the same
time (see online [37]). Although both mechanics yield similar

Fig. 5. Catalog: refactoring section.

refactoring outcomes, we proposed these mechanics because
developers might need to move two or more methods that were
extracted to different classes using the first mechanics. We
believe that the second mechanics is more complex to use. For
the removal of Long-signed Clone, we observed that Extract
Method(s) is one alternative to remove this smell. Another
frequent alternative is the application of Extract Method(s)

Fig. 6. Catalog: concrete smell example section.

and Change Parameter Type(s).
Our catalog also provides additional information with con-

crete examples of the code smell (see Figure 6) and the
refactoring (see Figure 7). Furthermore, our catalog describes
the potential side effects of such composites (see Figure 8).

VII. THREATS TO VALIDITY

This section presents and discusses threats to validity [38].
Construct Validity. Relying purely on automated detection

tools may be risky for identifying code smells and refactor-
ings [39]. However, manually validating large-scale samples
is unfeasible, especially for different projects. To mitigate this
threat, we carefully selected the tools employed: RefMiner 2.0
and Organic. Both tools are highly accurate for refactoring
detection and code smell identification (see Section IV).

Another threat addresses the risk of developers merging
one or more commits into a single commit (squash commits).
These commits would address independent and disconnected
refactorings, which is incompatible with the definition of
composite refactorings. In this sense, one common symptom
of squash commits is the large time gap between the changes
performed. Again, our decision to use RefMiner 2.0 is benefi-
cial once this tool was designed to ignore squash commits [40].
As a result, the time interval between commits analyzed in our
study is short, i.e., two weeks on average.

The heuristics to detect complete composites might bias the
results. To mitigate this threat, we employed the heuristics
proposed by Sousa et al. [13] for detecting composite refac-
torings, combined with the definition of complete composites

Fig. 7. Catalog: concrete refactoring example section.

Fig. 8. Catalog: side effects section.

proposed in previous work [17]. The concept of completeness
used in our study is based on these works (see Section II-B).

Internal Validity. The complete composites used in our
studies were detected by scripts written by the authors of
this paper. We implemented unit tests to assert that all scripts
would perform the expected behavior. Besides, two authors
double-checked the scripts and results of the unit tests, miti-
gating the risk of validation bias.

Conclusion Validity. Our definition of “completeness”
for classifying composite refactorings [17] is based on rigid
thresholds established by code smell detection tools [34].
Therefore, this definition may lead to misclassification. Be-
sides the already reported robustness of Organic, we also

relied on asking developers about their agreement with the
thresholds employed for code smell detection (see Section IV).
To identify the most frequent combinations in complete com-
posites (RQ1), we should keep in mind that some sequences of
refactorings would not be performed to intentionally remove
code smells. To mitigate this threat, the authors manually
assessed which refactoring instances actually contributed to
partially or completely eliminating the code smells detected.

To mitigate threats related to the automated identification of
side effects (RQ2), two authors manually analyzed the severity
and intensity of samples of smells propagated and introduced
by complete composite refactorings.

External Validity. Considering the nature of this study,
we do not intend to claim the generalization of our findings.
However, we made efforts to employ heterogeneous samples
of projects and participants. We analyzed projects having
different sizes and addressing different domains. Besides, we
found consistent results for different subsets.

VIII. CONCLUSION

Given the limitations of existing catalogs of refactorings,
we presented in this work an enhanced catalog of complete
composite refactorings. We conducted a large-scale study on
42 software projects, collecting 1,397 complete composites
that are used to remove 17 smell types. The main findings of
our study include (i) the identification of the most frequent
combinations in complete composites applied in the practice,
and (ii) the side effects of complete composites.

Our main contribution is the recommendations derived
from the practice, which includes four complete composites
to remove code smells. These recommendations can guide
developers to perform composite refactorings, while alerting
developers about the possible side effects. In future work, we
intend to extend our recommendations, explaining possible
motivations in which each composite can be applied to fully
remove two or more code smells.

ACKNOWLEDGMENT

This work is supported by CNPq grants 404027/2023-7,
404406/2023-8, 434969/2018-4, 427787/2018-1,
409536/2017-2, 141180/2021-8, 141276/2020-7,
and 312149/2016-6; CAPES grants 175956 and
88887.900069/2023-00, FAPERJ grant 22520-7/2016,
FAPERJ PDR-10 program 202073/2020, FAPEAL grant
60030.0000002357/2022, and FUNCAP grant BP5-00197-
00042.01.00/22.

REFERENCES

[1] D. Galin, Software quality: concepts and practice. John Wiley & Sons,
2018.

[2] C. Y. Laporte and A. April, Software quality assurance. John Wiley
& Sons, 2018.

[3] A. Uchôa, C. Barbosa, W. Oizumi, P. Blenilio, R. Lima, A. Garcia,
and C. Bezerra, “How does modern code review impact software design
degradation? an in-depth empirical study,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 511–522.

[4] A. Baabad, H. B. Zulzalil, S. Hassan, and S. B. Baharom, “Software
architecture degradation in open source software: A systematic literature
review,” IEEE Access, vol. 8, pp. 173 681–173 709, 2020.

[5] W. Oizumi, L. Sousa, A. Oliveira, L. Carvalho, A. Garcia, T. Colanzi,
and R. Oliveira, “On the density and diversity of degradation symptoms
in refactored classes: A multi-case study,” in IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE), 2019, pp. 346–
357.

[6] M. Fowler, Refactoring: Improving the Design of Existing Code, 1st ed.
Addison-Wesley Professional, 1999.

[7] D. Oliveira, W. K. G. Assunção, A. Garcia, B. Fonseca, and M. Ribeiro,
“Developers’ perception matters: machine learning to detect developer-
sensitive smells,” Empirical Software Engineering, vol. 27, no. 7.

[8] N. Yoshida, T. Saika, E. Choi, A. Ouni, and K. Inoue, “Revisiting the
relationship between code smells and refactoring,” in 24th International
Conference on Program Comprehension (ICPC), 2016, pp. 1–4.

[9] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Con-
fessions of GitHub contributors,” in 24th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2016, pp. 858–870.

[10] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim, L. Sousa,
and W. Oizumi, “Refactoring effect on internal quality attributes: What
haven’t they told you yet?” Information and Software Technology, vol.
126, p. 106347, 2020.

[11] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor, and how we
know it,” IEEE Transactions on Software Engineering (TSE), vol. 38,
no. 1, pp. 5–18, 2012.

[12] A. C. Bibiano, E. Fernandes, D. Oliveira, A. Garcia, M. Kalinowski,
B. Fonseca, R. Oliveira, A. Oliveira, and D. Cedrim, “A quantitative
study on characteristics and effect of batch refactoring on code smells,”
in 13th International Symposium on Empirical Software Engineering
and Measurement (ESEM), 2019, pp. 1–11.

[13] L. Sousa, D. Cedrim, A. Garcia, W. Oizumi, A. C. Bibiano, D. Tenorio,
M. Kim, and A. Oliveira, “Characterizing and identifying composite
refactorings: Concepts, heuristics and patterns,” in 17th International
Conference on Mining Software Repositories (MSR), 2020.

[14] A. C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J. Correia,
K. Santos, A. Oliveira, A. Garcia, R. Gheyi, B. Fonseca, M. Ribeiro,
C. Barbosa, and D. Oliveira, “How does incomplete composite refactor-
ing affect internal quality attributes?” in 28th International Conference
on Program Comprehension (ICPC), 2020.

[15] A. C. Bibiano, A. Uchôa, W. K. Assunção, D. Tenório, T. E. Colanzi,
S. R. Vergilio, and A. Garcia, “Composite refactoring: Representations,
characteristics and effects on software projects,” Information and Soft-
ware Technology, vol. 156, p. 107134, 2023.

[16] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring: Challenges and benefits at Microsoft,” IEEE Transactions
on Software Engineering (TSE), vol. 40, no. 7, pp. 633–649, 2014.

[17] A. C. Bibiano, W. Assunçao, D. Coutinho, K. Santos, V. Soares,
R. Gheyi, A. Garcia, B. Fonseca, M. Ribeiro, D. Oliveira et al., “Look
ahead! revealing complete composite refactorings and their smelliness
effects,” in 37th International Conference on Software Maintenance and
Evolution (ICSME), 2021.

[18] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,
B. Fonseca, M. Ribeiro, and A. Chávez, “Understanding the impact of
refactoring on smells: A longitudinal study of 23 software projects,”
in 11th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2017, pp. 465–475.

[19] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, “Code
smells and refactoring: A tertiary systematic review of challenges and
observations,” Journal of Systems and Software (JSS), vol. 167, p.
110610, 2020.

[20] A. Brito, A. Hora, and M. Tulio Valente, “Towards a catalog of
composite refactorings,” Journal of Software: Evolution and Process,
vol. 36, no. 4, p. e2530, 2024.

[21] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, “Interactive
and guided architectural refactoring with search-based recommendation,”
in 24th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2016, pp. 535–546.

[22] W. Oizumi, A. C. Bibiano, D. Cedrim, A. Oliveira, L. Sousa, A. Garcia,
and D. Oliveira, “Recommending composite refactorings for smell
removal: Heuristics and evaluation,” in 34th Brazilian Symposium on
Software Engineering (SBES), 2020, pp. 72–81.

[23] G. Szőke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy, “Empirical
study on refactoring large-scale industrial systems and its effects on
maintainability,” Journal of Systems and Software (JSS), vol. 129, pp.
107–126, 2017.

[24] A. C. Bibiano and A. Garcia, “On the characterization, detection and
impact of batch refactoring in practice,” in 34th Brazilian Symposium
on Software Engineering Software Engineering - Doctoral and Master
Theses Competition (SBES-CTD). Porto Alegre, RS, Brasil: SBC,
2020, pp. 165–179. [Online]. Available: https://sol.sbc.org.br/index.php
/cbsoft estendido/article/view/14626

[25] A. Brito, A. Hora, and M. T. Valente, “Refactoring graphs: Assessing
refactoring over time,” in 26th Conference on Software Analysis, Evo-
lution and Reengineering (SANER), 2019, pp. 504–507.

[26] D. Tenorio, A. C. Bibiano, and A. Garcia, “On the customization
of batch refactoring,” in 3rd International Workshop on Refactoring,
co-alocated International Conference on Software Engineering (IWoR-
ICSE). IEEE Press, 2019, pp. 13–16.

[27] M. Cinnéide and P. Nixon, “Composite refactorings for java programs,”
in 14th ECOOP (2000), 2000, pp. 129–135.

[28] Ant. (2017) Apache ant. Available at: https://github.com/apache/ant/co
mmit/b7d1e9bde44c.

[29] ——. (2017) Apache ant. Available at: https://github.com/apache/ant/co
mmit/af74d1f6b882.

[30] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Garcia, “How
does refactoring affect internal quality attributes? A multi-project study,”
in 31st Brazilian Symposium on Software Engineering (SBES), 2017, pp.
74–83.

[31] A. C. Bibiano. (2022) Complete composite website. [Online]. Available:
https://compositerefactoring.github.io/site/

[32] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering, 2020.

[33] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig,
“Accurate and efficient refactoring detection in commit history,” in 40th
International Conference on Software Engineering (ICSE), 2018, pp.
483–494.

[34] W. Oizumi, A. Garcia, L. Sousa, B. Cafeo, and Y. Zhao, “Code
anomalies flock together: Exploring code anomaly agglomerations for
locating design problems,” in 38th International Conference on Software
Engineering (ICSE), 2016, pp. 440–451.

[35] E. Fernandes, G. Vale, L. Sousa, E. Figueiredo, A. Garcia, and J. Lee,
“No code anomaly is an island: Anomaly agglomeration as sign of
product line instabilities,” in 16th International Conference on Software
Reuse (ICSR), 2017, pp. 48–64.

[36] PMD. (2024) An extensible cross-language static code analyzer. Avail-
able at: https://pmd.github.io/latest/pmd userdocs cpd.html.

[37] A. C. Bibiano, D. Coutinho, A. Uchôa, W. Assunçao, , A. Garcia,
D. Oliveira, R. de Mello, T. Colanzi, B. Fonseca, and A. Vasconcelos.
(2023) Catalog of complete composites. [Online]. Available: https:
//compositerefactoring.github.io/catalog

[38] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering, 1st ed. Springer
Science & Business Media, 2012.

[39] R. de Mello, R. Oliveira, A. Uchôa, W. Oizumi, A. Garcia, B. Fonseca,
and F. de Mello, “Recommendations for developers identifying code
smells,” IEEE Software, 2022.

[40] N. Tsantalis, A. Ketkar, and D. Dig, “Refactoringminer 2.0,” IEEE
Transactions on Software Engineering (TSE), 2020.

https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/14626
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/14626
https://github.com/apache/ant/commit/b7d1e9bde44c
https://github.com/apache/ant/commit/b7d1e9bde44c
https://github.com/apache/ant/commit/af74d1f6b882
https://github.com/apache/ant/commit/af74d1f6b882
https://compositerefactoring.github.io/site/
https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://compositerefactoring.github.io/catalog
https://compositerefactoring.github.io/catalog

	Introduction
	Background and Problem Statement
	Composite Refactoring (or Composite)
	Completeness of Composite Refactorings
	Fine-Grained and Coarse-Graine Refactorings
	Limitations of Existing Recommendations of Complete Composite Refactorings

	Motivating Example
	Study Settings
	Study Steps and Procedures

	Results
	Frequent combinations in Complete Composites (RQ1)
	Side Effects of the Frequent Combinations in Complete Composites (RQ2)

	An Enhanced Catalog of Complete Composites
	Threats to Validity
	Conclusion
	References

