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Abstract—Background: Code development is done collabora-
tively in platforms such as GitHub and GitLab, following a
pull-based development model. In this model, developers actively
communicate and share their knowledge through conversations.
Pull request conversations are affected by social aspects such as
communication dynamics among developers, discussion content,
and organizational dynamics. Despite prior studies indicating
that social aspects indeed impact software quality, it is still
unknown to what extent social aspects influence design decay
during software development. Thus, since social aspects are
intertwined with design and implementation decisions, there
is a need for investigating how social aspects contribute to
avoiding, reducing, or accelerating design decay. Aims: To fill
this gap, we performed a study aimed at investigating the
effects of pull request conversation on design decay. Method:
We investigated 10,746 pull request conversations from 11 open-
source systems, characterizing in terms of three different social
aspects: discussion content, organizational and communication
dynamics. We considered 18 social metrics to these three social
aspects, and analyzed how they associate with design decay.
We used a statistical approach to assess which social metrics
are able to discriminate between impactful and unimpactful
pull requests. Then, we employed a multiple logistic regression
model to evaluate the influence of each social metric per social
aspect in the presence of each other on design decay. Finally,
we also observed how the combination of all social metrics
influences the design decay. Results: Our findings reveal that
social metrics related to the size and duration of a discussion, the
presence of design-related keywords, the team size, and gender
diversity can be used to discriminate between design impactful
and unimpactful pull requests. Organizational growth and gender
diversity prevent decay. Each software community has its unique
aspects that can be used to detect and prevent design decay. Also,
design improvements can be accomplished by timely feedback,
engaged communication, and design-oriented discussions with
the contribution of multiple participants who provide significant
comments. Conclusion: The social aspects related to pull request
conversations are useful indicators of design decay.

Index Terms—pull request, social aspects, design decay

I. INTRODUCTION

A key concern of developers involved in collaborative soft-
ware development is to prevent or decrease the design decay of
software systems [1]–[5]. In this context, some studies assess
both technical and social factors related to design decay [6]–
[8]. The design of a software system is considered decayed

if it is more difficult to maintain and evolve than it should
be [9]. Design decay can be measured by multiple symptoms,
popularly known as code smells. Code smells are structures
in a program that indicate poor design choices [10], leading
to structural design decay [11]. For example, a Long Method
is a smell which consists of a method that is too long and
complex to understand and change [10], [11].

The identification and removal of code smells require a
deep understanding of multiple parts of a system [6], [12].
Therefore, the lack of communication between developers
may negatively affect such activities, and even experienced
developers have difficulty in identifying code smells when
working in isolation [13], [14]. Thus, an important factor that
contributes to avoiding, reducing, or accelerating design decay
during collaborative software development consists of devel-
opers continually communicating and sharing their knowledge
along a code change [15]. In collaboratively platforms, such
as GitHub and GitLab, the communication is promoted by
the pull-based development [16], in which developers actively
communicate and share their knowledge in pull request conver-
sations. In such conversations, developers review each other’s
code, identify issues, and discuss ways to improve the code.

The effectiveness of communication depends on several
social aspects [17],1 which can be categorized into three main
dimensions [18]: communication dynamics, the role of partic-
ipants and the temporal aspects of the messages; discussion
content, message exchanges and the content of each message;
and organizational dynamics, characteristic of the team as a
whole (e.g., team size and gender diversity). Recent studies
found the quality of code is influenced by social aspects related
to communication dynamics and discussion contents, which
have been linked to an increase in design decay symptoms [1]–
[3], [19]–[21]. For instance, the content of comments around
a code change (e.g., the presence of code snippets and the
number of words per comment) can indicate the quality of
the discussion, and therefore contribute to either improve or
deteriorate the structural design of a system [1], [2].

1Social aspects in software development refer to the ways in which
individuals and teams interact with each other within a community.
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Despite prior studies revealed the influence of certain social
aspects on the quality of the source code [1]–[3], [19]–[21],
one question is still open: to what extent social aspects in-
fluence the design decay during software development? Since
social aspects are intertwined with design and implementation
decisions, there is a need for investigating how social aspects
contribute to avoiding, reducing, or accelerating design decay.
By analyzing social aspects, individually or together, we can
provide valuable insights for community managers and devel-
opers to enhance collaboration, communication, and overall
software quality. By answering the open question, open-source
communities and companies can monitor certain social aspects
that may positively or negatively influence design decay.

Some studies have investigated how different social aspects
can be used as sources of information and reasoning for the
quality of a software’s design [1], [19], [22], [23]. Existing
work has shown that collaborative software development may
not always be beneficial, as code review activities may lead
to design decay in certain circumstances [2], [3], [24]–[26].
However, there is a lack of evidence on how different social
aspects (e.g., [1], [19], [22], [23]), individually or together, can
be used as sources of information for reason about quality of
a software design. Furthermore, little is known about how pull
requests conversations are related to design decay [1].

The goal of this work is to understand the influence of
social aspects surrounding pull request conversations on design
decay. For that, we extracted 18 decay symptoms, using the
Organic tool [12], from 21,492 commits related to merged
pull requests of 11 open-source projects hosted on GitHub.
For each commit in the dataset, we generated code smell data
for the commit and its previous version, to compare the smells
present on the ‘before’ and ‘after’ versions. By doing that, we
were able to see how many smells were added or removed.
We also mined 10,746 pull requests to generate a dataset
of 18 social metrics for those systems. Finally, we applied
two statistical tests: (i) Wilcoxon Rank Sum Test, to assess
if social metrics were able to differentiate between impactful
pull requests (decay increased or decreased) and non-impactful
pull requests (decay did not change); and (ii) Multiple Logistic
Regression, to evaluate the influence of each metric, in the
presence of others metrics, on the design decay symptoms.

Our findings reveal that social metrics related to the size
and duration of a discussion, the presence of design-related
keywords, the team size, and gender can be used to discrimi-
nate between design impactful and unimpactful pull requests.
We also observed that organizational growth and gender di-
versity avoid decay. Furthermore, design improvements can
be accomplished by timely feedback, engaged communication,
and refactoring-oriented discussions with the contribution of
multiple participants who provide significant comments. As
a contribution, knowing the influence of social aspects on
software design can help to derive guidelines for avoiding
or mitigating design decay. This knowledge can also help to
improve the current practices and develop a new generation
of tools for assisting developers on becoming aware about the
design impact during software development activities.

II. BACKGROUND AND RELATED WORK

Social aspects in software development. Multiple studies
analyzed the importance of social aspects in the software
development process [22]. For instance, they collected social
metrics to characterize and compute “social debt”, aiming
to observe how social problems can directly affect decision-
making in software development. They concluded that social
debt leads to more error-prone decisions. Tamburri et al. [23]
performed a study on social aspects in industrial projects,
providing the definition of common problems that can occur,
together with potential mitigation to these problems. The main
difference between these studies and our work is that they
focus on how the social aspects of software engineering can
cause on external software problems.

Wiese et al. [18] reported how social metrics were used in
the past by software engineering researchers to build prediction
models. They identified nine dimensions and three categories
of metrics, some of which are heavily used in this work (see
Section III-A). This classification was expanded by Barbosa et
al. [1]. Our study expands it by investigating a broader set of
social aspects, particularly by introducing new metrics related
to communication dynamics and discussion content.

Social aspects versus software quality. When looking at
the relationship between social aspects and software quality,
Betternburg et al. [19] studied how social aspects can affect
the quality of released pieces of software. They found a set of
aspects with a statistically significant connection to defects:
(i) low code churn (which was used as the baseline); (ii)
low number of external resources (e.g., links); and (iii) high
variance of the time between comments in discussions.

Barbosa et al. [1] conducted the first study that focused
on social aspects surrounding pull request conversations and
design decay. They concluded that the social aspects – com-
munication dynamics and discussion content – are able to
differentiate between two types of pull requests (impactful
and non-impactful) and that multiple social aspect metrics
are related to both the increase and decrease of the design
decay symptoms. Our study differs from the previous work
by exploring a different set of smells at the method and class
levels, that are detected earlier in software development [27],
compared to the architectural and design levels considered
in the related work. Additionally, we have considered how
the social aspect related to organization dynamics impacts
software quality. Moreover, different from [1], we evaluate
how the social metrics impact the software quality, considering
each software community in isolates.

Other studies have investigated the relationship between pull
request discussions on GitHub and software quality. Soares
et al. [28] performed a study to understand the relationship
between refactorings and improvements to code quality, con-
sidering developer discussions. They identified that developers
tend to discuss refactorings when they are performing more
complex changes. Coutinho et al. [29] analyzed how different
social and technical factors interacted to influence design
decay. They found that the size of pull request discussions



could be used in a software system to differentiate modules
whose design decayed at different levels. Also, they identified
a relationship between large changes made by newbies and
design decay. Our work differs from these two above due to
the difference in scope of the analyses. While both related
works both focus on the contents of the discussions, this work
extends this analysis to the dynamics of the communication
and the dynamics of the organization in which they took place.

III. STUDY SETTINGS

A. Goal and Research Questions

To define the goal, research questions (RQs), and social
aspects of our study, we followed the Goal-Question-Metric
(GQM) template [30]. Our goal is: analyze social aspects;
for the purpose of investigate their relationship with software
decay; with respect to the pull request conversations and code
decay symptoms; from the viewpoint of software developers
when doing code contributions; in the context of 11 open-
source systems. We have four RQs, as follows:

RQ1: What social aspects are more related to design
decay? In this work, we focus on three social aspects related to
pull request conversations (see Table I). First, communication
dynamics (8 metrics) is the aspect that encompasses the
roles of participants in the discussion and temporal factors
of messages exchanged in a conversation. For instance, it
includes factors such as the number of messages sent, the
response time of participants, or the role of the developers.
Second, discussion content (6 metrics) is the aspect covering
the content of the messages exchanged and the interactions
between developers during the discussion. For instance, it
includes factors such as number of words and the presence
of technical terms. Third, organizational dynamics (4 metrics)
covers the characteristics of the team as a whole, such as the
team size and turnover.

For RQ1, we aim to investigate how these three social
aspects observed in pull request conversations may reduce or
amplify design decay. Only the first two of those three dimen-
sions of social aspects were investigated in related works [1],
[18], [19], [22], [23], [28], [29]. The answer for RQ1 will show
us which social metrics are most prominent in distinguishing
impactful and unimpactful pull requests. An impactful pull
request is one that causes an increase or decrease in design
decay symptoms upon merging. Conversely, unimpactful pull
requests have no effect on design decay. Moreover, when there
is an increase in design decay symptoms, it suggests that there
are more smells in comparison to the parent commit, while
a decrease in design decay symptoms implies that there are
fewer smells. Finally, understanding which social metrics are
most closely associated with impactful pull requests helps us
to assess the relationship between these metrics and decay.

RQ2: To what extent do organizational dynamics influence
design decay? After distinguishing impactful and unimpactful
pull requests via social metrics, in RQ2 we aim to understand
what is the influence of organizational dynamics aspects on
design decay. Thus, in RQ2, we investigate if social metrics
from this aspect observed in pull request conversations relate

to design decay. Our motivation to further explore this social
aspect from pull request conversations, in terms of social
metrics, is that companies and communities need a more
holistic view of the importance of certain aspects of their team
in collaborative software development.

RQ3: How do social aspects grouped by communities
influence design decay? In real settings, multiple social
aspects emerge during activities of collaborative software
development, due to the intrinsic nature of these activities [1],
[14], [21]–[23]. Thus, RQ3 aims to investigate the impact of
multiple social aspects grouped by communities on design
decay. This question implies that social aspects can vary
between different software repositories. However, it is likely
that social aspects are relatively consistent within a software
community, as developers share similar values, goals, and
practices. Moreover, by analyzing information grouped by
communities, we can gain insights into how these social
aspects, represented by social metrics, are manifested and
their impact on design quality.

RQ4: How do social aspects influence design decay?
Social aspects may vary among different companies or com-
munities, influencing design decay. However, we also want to
investigate how social aspects may influence software projects
individually, since not always a project has a big commu-
nity/companies surrounding it. In RQ4 we aim to understand
how the social aspects influence design decay in a general
way. Thus, we analyze the social aspects of communication
dynamics, discussion content, and organizational dynamics
aspects on design decay from the 11 projects. This analysis
provides insights for future research on social aspects and
design decay in software development, and it assists software
communities of different sizes and in different stages of life.

The contribution by answering these RQs is to help com-
panies and communities establish guidelines and best prac-
tices that promote effective communication, collaboration, and
design quality. For instance, social aspects can be monitored
along with discussions in pull requests by social metrics. This
monitoring can indicate the proneness increase or the decrease
of design decay symptoms before changes are submitted and
merged into the main branch. By doing this, we can shed light
on future work on social aspects, and design decay, for soft-
ware communities, so they can monitor their social behaviors
to decrease the quality of the software being produced.

B. Study Steps and Procedures

In this section, we describe details of the steps of our study.
Step 1: Selecting open-source systems for analysis. For

the selection of subject systems for our study, we defined four
inclusion criteria: (i) systems that use pull request reviews as
a mechanism to receive and evaluate code contributions; (ii)
systems that have at least 1k commits and pull requests in the
past year; (iii) systems that are at least 5 years old, and are
currently active; and (iv) Java-based systems, since there is a
wide availability of static analysis tools and libraries that can
automatically identify source code problems [12], [31], [32].
These criteria were selected in order to avoid known perils of



TABLE I
DIMENSIONS OF SOCIAL ASPECTS RELATED TO PULL REQUEST CONVERSATIONS INVESTIGATED IN OUR STUDY

Metrics Description Rationale
Communication Dynamics Dimension
Number of Newbies Number of unique users that interacted in any way in a discussion inside a pull

request (either opened, commented, merged or closed)
Number of Contributors Number of unique contributors that interacted in any way in a pull request (either

opened, commented, merged or closed)
These three metrics allows us to identify discussions with the presence
of common users, constant contributors, experienced developers or core
members of the project

Number of Core Developers Number of unique core developers that interacted in any way in a pull request (opened,
commented, merged or closed)

Discussion Size Number of comments inside a Pull Request. Discussions with a high number of comments around a code change would
find possible design problems, improving or maintaining the quality

Mean Time Between Com-
ments

Sum of the time between all comments of a pull request weighted by the number of
comments.

A higher time between comments (e.g., a long pause in an otherwise fast-
paced discussion) are related to code decay

Discussion Duration (Discus-
sion Length)

Time in days that a pull request lasted (difference of creation and closing days). The longer is the discussion, the higher the chance of problems being
explained and solved, avoiding code decay

Time Between Pull Request
Opening and First Comment

Time in days between the pull request opening and the first comment on that pull
request

The longer the time between the opening and the first comment, the higher
the chance of the developer do not really engage on solving possible
problems, leading to design decay

Time Between Last Comment
and Merge

Time in days between the last comment on the pull request and the pull request
closing

The longer the time between the last comment and closing of the pull
request, the higher the chance of the author does not engage on new minor
changes, leading to design decay.

Discussion Content Dimension
Number of Words in Discus-
sion

Sum of the all words of each comment inside a pull request. Here we applied
the preprocessing in the text removing contractions, stop words, punctuation, and
replacing numbers

Discussions with a high number of words are related to more complex
changes, that may lead to code decay

Number of Words per Com-
ment in Discussion

Sum of all words of each comment inside a pull request weighted by the number of
comments. Here we applied the preprocessing in the text removing contractions, stop
words, punctuation, and replacing numbers

Discussions with a high weighted number of words are related to more
complex changes, that may lead to code decay

Number of Design Keywords Sum of all words of each comment inside a pull request that contains a keyword
from the following list: design, architect, dependenc, requir, interface, servic, artifact,
document, behavior, modul

Changes with design keywords may show that developers were concerned
about design

Number of Refactoring Key-
words

Sum of all words of each comment inside a pull request that contains a keyword from
the following list: refactor, mov, split, fix, introduc, decompos, reorganiz, extract,
merg, renam, chang, restructur, reformat, extend, remov, replac, rewrit, simplif, creat,
improv, add, modif, enhanc, rework, inlin, redesign, cleanup, reduc, encapsulat

Changes with refactoring keywords may show that developers were con-
cerned about design

Density of Design Keywords Mean of design-related keywords per comments The higher the mean of ’design’ comments, the smaller the chances of
decay happening

Density of Refactoring Key-
words

Mean of refactoring-related keywords per comments The higher the mean of ’refactoring’ comments, the smaller the chances of
decay happening

Organization Dynamics Dimension
Team Size Number of Active Developers on the past 90 days A bigger amount of active developers can engage more the community on

discussions, avoiding design decay
Gender Diversity Number of male/female contributors on the team Gender diversity on a team leads to better team performance. Thus, avoiding

design decay
Number of Newcomers Number of new contributors on the past 180 days A bigger amount of newcomers can introduce less experience on the

changes, leading to design decay
Number of Developers Inac-
tive

Number of developers that previously contributed to the project but did not contribute
on the past 180 days but are now participating in a pull request

More developers inactive can decrease the engagement of the community,
leading to design decay

*For any GitHub Pull Request, we have three types of comments: (i) comments on the Pull Requests as a whole; (ii) comments on a specific line within the Pull Request (Review
comment); and (iii) comments on a specific commit within the Pull Request (Commit comment). We use the first one, as we are only interested in pull request conversations.

TABLE II
SOFTWARE SYSTEMS INVESTIGATED IN THIS STUDY

Owner System Domain # Commits # PRs Time span ≈LOC
exoplayer Library 15057 589 2014 - 2023 2.5m
guava Library 6025 562 2009 - 2023 1m
gson Library 1814 463 2008 - 2023 50.8k
dagger Dependency Injection 3856 1088 2012 - 2023 239.5k

Google

guice Dependency Injection 2057 344 2006 - 2023 107.6k
spring-boot Development Framework 42075 3345 2012 - 2023 785.4kSpring spring-security Framework Security 13432 1075 2004 - 2023 752.3k
zuul API Gateway 1435 713 2012 - 2023 49.3k
eureka Service Registry 1687 745 2001 - 2023 53.6k
Hystrix Fault Tolerance 2109 673 2012 - 2022 78.6kNetflix

conductor Microservices 3131 1149 2016 - 2023 89.7k

TABLE III
TYPES OF DECAY SYMPTOMS INVESTIGATED IN THIS STUDY

Class-level Symptoms
God Class, Class Data Should Be Private, Complex Class, Lazy Class,
Refused Bequest, Spaghetti Code, Speculative Generality, Data Class, Brain Class
Method-level Symptoms
Feature Envy, Long Method, Long Parameter List, Message Chain, Dispersed
Coupling, Intensive Coupling, Shotgun Surgery, Brain Method, Inflated Exception

mining software repositories [33], and are also used in related
work [1]. Table II presents details of the 11 selected systems.

Step 2: Detecting the presence of design decay in
commits. In this step, we used the Organic tool [12]. Organic
is a static code analyzer that collects software metrics for code
smell detection in methods and classes [12]. We detected a
total of 18 types of code decay symptoms (i.e., code smells)
in the pull requests, which are presented in Table III.

For detecting these code decay symptoms, we only con-

sidered the commits that merged the pull requests. More
precisely, for each pull request PRi, we downloaded a snapshot
of the commit Ci that merged the PRi. Next, we calculated
the difference between Ci and Ci−1, Ci−1 being the parent
commit of Ci, in order to guarantee that the introduced decay
belonged only to Ci. By doing this, we avoid the rebase
effect [34], [35], due to such a pull request being the only
potential point in time in which the code could be changed.
The descriptions, detection strategies, and thresholds for each
symptom are available in our replication package [36].

Step 3: Computing design code decay in terms of
density and diversity of symptoms. The density and diversity
of symptoms are indicators of progressive design decay, as
observed in previous studies [2], [3], [6]. The density is
measured by calculating the number of smells found within
a commit, e.g., if a commit has 3 Long Methods and 1 God
Class, the density of that commit is 4. On the other hand,
the diversity is calculated by the number of different smell
types found within a commit, e.g., if a commit has 3 Long
Methods and 1 God Class, the diversity is 2, as there are two
different smell types. Previous studies observed that a positive
difference in the density (or diversity) of symptoms indicates
an increase of the design decay as a result of the merged pull
request. Therefore, this positive value represents a worsening
of the software design. Similarly, a negative difference in



the density (or diversity) of symptoms indicates a decrease
of the design decay as a result of the merged pull request.
Finally, a difference equal to zero in the density (or diversity)
of symptoms indicates that there has been no harmful design
structure change. This difference is calculated by the following
methodology. For each commit Ci of the dataset, the tool
generates code smell data for Ci and Ci−1, where Ci−1

represents the parent commit of Ci, to compare the smells
present on both commits. With the number of smells added
or removed, we compute four indicators related to the density
and diversity at class and method levels, for around 11,600
merged pull requests. The replication package [36] includes
all the computed indicators.

Step 4: Calculating metrics to measure different social
aspects. We have grouped each metric into three dimensions,
namely communication dynamics, discussion content, and or-
ganizational dynamics, as presented in Table I and described
in RQ1. These three dimensions indicate social factors that
can either facilitate or hinder structural design change. The
computation of the social metrics was performed in three steps:
(i) collect the pull requests, and related commits and comments
from the selected projects through the GitHub API, (ii) extract
the information needed for calculating the metrics from the
collected data, and (iii) calculate the metrics following the
methodology of each metric (see the column ‘description’ in
Table I). We collected 18 metrics in total, which are used to
measure social aspects affecting and interfering with the code
development artifacts [37]. We considered those metrics as
independent variables to measure certain social aspects.

Step 5: Assessing the relationship between social aspects
and impactful pull requests. To decide whether a social met-
ric is statistically different for impactful pull requests, when
compared to the unimpactful ones, we use the Wilcoxon Rank
Sum Test [38]. The test was conducted using the customary
0.05 significance level (i.e., 95% of confidence). We selected
this non-parametric test based on the observation that social
metrics used in our study are not normally distributed [39].

Step 6: Evaluating the influence of multiple social
aspects on design decay. We rely on a multiple logistic
regression [39] model to evaluate the influence of social
aspects on design decay. In this model, we analyze each group
of social aspects separately. Moreover, the multiple logistic
regression model calculates the odds ratio using each metric
in the presence of each one other. All the social aspects
and their related metrics presented in Table I are used as
predictors in the model, and the outcome variable is whether
there was decay on the design symptoms related to the merged
pull request. We choose a multiple logistic regression model
due to the fact that we are studying the effect of multiple
predictors (i.e., the metrics) in a binary response variable.
We removed the metrics that have a pair-wise correlation
coefficient above 0.7 from our models to avoid the effects
of multicollinearity [40].

To measure the relative impact, we analyzed the magnitude
of the effect of the metrics over the possibility of a merged
pull request on the design decay. To this end, we estimate the

relative impact using the odds ratio [41]. Odds ratios represent
the increase or decrease in the odds of an event happening. In
our case, we measure the odds of the merge of a pull request
that lead to the decay of the system occurring per “unit” value
of a predictor (metric). An odds ratio below 1 indicates a
decrease in these odds (i.e., a risk-decreasing effect), while
above 1 indicates an increase (i.e., a risk-increasing effect).
Since most of our metrics presented a heavy skew, we needed
to reduce them. To do so, we applied a log2 transformation
on the right-skewed predictors, and a x3 transformation on
the left-skewed [38]. Moreover, we normalized the continuous
predictors in the model to provide normality. As a result, the
mean of each predictor is equaled to 0, and the standard
deviation to 1. To ensure the statistical significance of the
predictors, we employ the customary p − value < 0.05 for
each predictor in the regression models.

IV. RESULTS AND DISCUSSION

A. Social Metrics and Impactful Pull Requests

We address RQ1 by using the Wilcoxon Rank Sum Test to
assess the relationship between social metrics, from different
social aspects, and impactful and unimpactful pull requests.
The analysis was made taking into consideration four different
scenarios of design decay: (i) the density and (ii) diversity
of class-level design decay symptoms; (iii) density and (iv)
diversity of method-level design decay symptoms. Table V
presents the results of our analysis. Since the results of density
and diversity for both levels of design decay were the same,
we are only showing the design level (class-level and method-
level) on the table. Moreover, the statistical significant metrics
(p− value < 0.05) are highlighted with a gray background.

The experience of the past stay in the past. Among all
the metrics analyzed for both class-level and method-level in
the projects, we highlight that the Number of Developers In-
active (# Devs Inactive) metric do not exhibit any statistically
significant relationship in any of the analyzed projects. We
used a threshold of 180 days of inactivity for developers who
have previously committed to the repository as a sign that they
may no longer be up-to-date with the project’s discussions
and changes. In this sense, their continued presence in pull
request conversations may contribute to design decay. Our
results suggest that despite a developer’s past contributions,
their presence in the pull requests conversations may not
necessarily indicate any change in the design decay symptoms.
Thus, the # Devs Inactive metric will be eliminated from the
forthcoming analysis. On the other hand, the presence of new
developers in the community (# New Devs) can suggest that
their lack of experience is related to changes in the design.

Gender relation with the decay. In Table V we can see that
the two metrics related to gender had divergent results. The #
Females only was significant on 4 of the 11 projects for the
method-level smells and 3 of the 11 projects for the class-level
smells. Conversely, the # Males was significant in all projects
for both types of smells. These results show us that gender
has a relation with changes in the decay symptoms (either
improvement or deterioration). To better understand why the



TABLE IV
BLAU INDEX FOR THE GENDER DIVERSITY

Gender Diversity
Females Males

ExoPlayer 0.114 0.612
guava 0.045 0.532
gson 0.404 0.632
dagger 0.010 0.647
guice 0.022 0.689
spring-boot 0.130 0.504
spring-security 0.282 0.573
zuul 0.027 0.521
eureka 0.077 0.619
Hystrix 0.020 0.583
conductor 0.109 0.672

# Females were significant in less than half of the projects, we
applied the Blau index [42] in our data as a measurement of
diversity. A higher Blau index value indicates greater diversity,
while a lower value indicates less diversity. The results, in
Table IV, indicated that in projects where # Females do not
show significance, the Blau index is below 0.3, emphasizing
the need for further investigation into this matter.

(Key)words are efficient to determine impactful and
unimpactful pull requests apart. Our results from RQ1

showed us that the metrics from the discussion content aspect,
namely # of Words, WPCD (Words Per Comments in Discus-
sion), # Design Keywords, # Refact Keywords, DDK (Density
of Design Keywords), and DRK (Density of Refactoring Key-
words) have a statistical significant relation with changes in
the decay symptoms. Some of these metrics (# Words and
WPCD) do not perform as well on the class-level smells (7
out of 11 projects) as the keyword metrics (DDK, DRK, #
Design Keywords, and # Refact Keywords). The results of
our study indicate a strong correlation between discussion
content and changes in design symptoms. This is expected,
based on our rationale, but is particularly significant for future
research, as these textual metrics can be easily processed by
text analyzers or NLP algorithms. Also, bots that monitor these
metrics could analyze pull requests conversations in real time
to detect potentially impactful design changes.

Finding 1: The most prominent metrics for differentiat-
ing impactful and unimpactful pull requests are the size
and duration of a discussion, the presence of design-
related keywords, the team size, and gender diversity.

B. Organizational Dynamics and Decay Decay

In contrast to RQ1, which solely investigated the occurrence
of a design changes (whether there were an addition or removal
of design decay symptoms), we address the RQ2 by analyzing
the impact of organizational dynamics on design decay. To
this end, we examine the influence, namely the odds ratio
of a social aspect increasing or decreasing the design decay
symptoms, of individual metrics within this aspect and their

interactions with each other. We used a multiple logistic
regression to perform this analysis. Table VI overviews the
analysis results, where each row represents the metrics for a
specific project, divided by class-level smells and method-level
smells. The gray cells indicate the metrics that are statistically
significant with a p − value less than 0.05. Arrows indicate
their behavior, whether it increases the odd of the degrada-
tion happening (upward arrow) or decreases it (downward
arrow). Moreover, an odds of 1 means no effect, while greater
than 1 indicates increased odds and less than 1 indicates
decreased odds. Finally, these results provide us with insights
into which actions or activities, related to the organization
dynamics aspect, within a pull request conversation have a
relationship with the improvement or deterioration of design
decay symptoms. We discuss the results in detail as follows.

Organizational growth avoids decay. Based on our anal-
ysis of the organizational dynamics aspect related to design
decay, we found that all metrics, when statistically significant,
have a positive impact (decrease of the design decay symp-
toms) on the design of the software system. Specifically, we
have observed that having a larger team size and the presence
of new developers in the team is associated with a lower like-
lihood of design decay. Based on our rationale, the outcome of
the metric Team Size is expected, as a larger team means that
the assignments are distributed among more members, leading
to a more balanced workload. Regarding team size indicated
that, on average, there were three active developers involved in
the 90-day period leading up to the closure of the pull request.
The maximum team size is in the spring community with 27
developers. In conclusion, our findings are corroborated by
prior research [43], which demonstrates a positive association
between larger team participation and improved code quality.

Surprisingly, we also observed that the metric # New Devs
was associated with a decrease in design decay symptoms.
This was unexpected, as new developers are typically assumed
to lack sufficient experience to contribute to complex tasks
such as those related to design changes. In summary, it may
be beneficial for software companies to focus on responsively
growing their teams as a means of improving software quality.

Finding 2: A larger team is associated with a lower
likelihood of design decay. Our understanding is that
more developers involved in the daily tasks help to
decrease the workload, allowing the developers to have
more time to be concerned about code quality.

Gender diversity prevents design decay. Interestingly,
we found that having a higher number of male developers
(# Males) is associated with a lower likelihood of design decay.
The presence of male developers might be beneficial to the
design process. In contrast, we observed that the impact of the
(# Females) developers on the design decay symptoms is not
statistically significant in most of the analyzed projects, except
for spring-security and eureka, where it exhibits a similar



TABLE V
RESULTS OF THE STATISTICAL SIGNIFICANCE (P-VALUE) OF THE WILCOXON RANK SUM TEST

exoplayer guava gson dagger guice spring-boot spring-security zuul eureka Hystrix conductor
CL ML CL ML CL ML CL ML CL ML CL ML CL ML CL ML CL ML CL ML CL ML

Communication Dynamics
# Newbies 0.765 0.672 0.818 0.474 0.19 0.046 0.0 0.0 0.0 0.0 0.674 0.881 0.507 0.978 0.584 0.813 0.0 0.0 0.0 0.0 0.0 0.0
# Contributors 0.0 0.0 0.0 0.0 0.0 0.0 0.478 0.894 0.401 0.124 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Core Devs 0.983 0.981 0.0 0.0 0.0 0.0 0.0 0.002 0.039 0.0 0.0 0.0 0.0 0.0 0.987 0.874 0.965 0.715 1.0 1.0 0.988 0.985
Discussion Size 0.0 0.0 0.0 0.0 0.0 0.0 0.035 0.22 0.335 0.331 0.0 0.0 0.0 0.0 0.005 0.003 0.0 0.0 0.0 0.0 0.0 0.0
MTBC 0.0 0.0 0.259 0.221 0.0 0.0 0.764 0.964 0.798 0.771 0.007 0.003 0.0 0.0 0.488 0.27 0.0 0.0 0.0 0.0 0.0 0.0
Discussion Duration 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TBOF 0.0 0.0 0.425 0.713 0.0 0.0 0.6 0.984 0.988 0.927 0.369 0.285 0.0 0.0 0.704 0.295 0.0 0.0 0.0 0.0 0.0 0.0
TBLM 0.0 0.0 0.046 0.051 0.0 0.0 0.292 0.511 0.62 0.698 0.0 0.0 0.0 0.0 0.088 0.094 0.0 0.0 0.0 0.0 0.0 0.0
Discussion Content
# Words 0.0 0.0 0.063 0.018 0.0 0.0 0.144 0.68 0.841 0.894 0.001 0.0 0.0 0.0 0.054 0.041 0.0 0.0 0.0 0.0 0.0 0.0
WPCD 0.0 0.0 0.052 0.016 0.0 0.0 0.146 0.684 0.862 0.914 0.003 0.001 0.0 0.0 0.056 0.046 0.0 0.0 0.0 0.0 0.0 0.0
# Design Keywords 0.004 0.0 0.022 0.111 0.0 0.0 0.0 0.0 0.02 0.005 0.028 0.039 0.004 0.039 0.685 0.623 0.007 0.002 0.0 0.001 0.0 0.0
# Refact Keywords 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DDK 0.005 0.0 0.019 0.101 0.001 0.0 0.0 0.0 0.017 0.004 0.062 0.098 0.005 0.041 0.705 0.659 0.009 0.003 0.0 0.001 0.0 0.0
DRK 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Organizational Dynamics
Team Size 0.001 0.0 0.0 0.0 0.0 0.0 0.002 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.013 0.046 0.134 0.001 0.077 0.106 0.014 0.002
# Females 0.2 0.091 0.852 0.71 0.001 0.0 0.982 0.935 0.98 0.977 0.001 0.0 0.0 0.0 0.969 0.757 0.73 0.198 0.979 0.977 0.172 0.011
# Males 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# New Devs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.329 0.095 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Devs Inactive 0.835 0.678 0.831 0.985 0.374 0.538 0.985 0.981 0.873 0.859 0.535 0.55 0.974 0.848 0.975 0.972 0.977 0.973 0.988 0.987 0.991 0.932

Gray cells represent statistically significant differences, with (p-value < 0.05) between impactful and unimpactful pull requests.

TABLE VI
MULTIPLE LOGISTICS REGRESSION RESULTS FOR THE ORGANIZATIONAL

DYNAMICS ASPECT

Team Size # Females # Males # New Devs
CL ML CL ML CL ML CL ML

exoplayer 0.673 ↓ 0.531 ↓ 0.927 0.941 0.253 ↓ 0.367 ↓ 0.311 ↓ 0.213 ↓
guava 0.433 ↓ 0.52 ↓ 0.951 0.278 0.464 ↓ 0.343 ↓ 0.311 ↓ 0.378 ↓
gson 0.175 ↓ 0.162 ↓ 0.95 1.143 1.012 1.501 0.03 ↓ 0.019 ↓
dagger 1.126 1.09 0.527 0.524 0.237 ↓ 0.25 ↓ 1.155 1.146
guice 0.291 ↓ 0.401 ↓ 3.81 3.536 1.131 0.792 0.245 ↓ 0.343 ↓
spring-boot 0.335 ↓ 0.275 ↓ 0.961 0.703 0.01 ↓ 0.011 ↓ 0.795 0.79
spring-security 0.773 ↓ 0.796 ↓ 0.561 ↓ 0.565 ↓ 0.152 ↓ 0.15 ↓ 0.561 ↓ 0.548 ↓
zuul 0.559 ↓ 0.51 ↓ 1.061 1.066 1.038 1.062 0.095 ↓ 0.09 ↓
eureka 0.263 ↓ 0.317 ↓ 0.684 ↓ 0.74 ↓ 0.387 ↓ 0.366 ↓ 0.057 ↓ 0.079 ↓
Hystrix 0.933 0.93 0.409 0.408 0.006 ↓ 0.008 ↓ 0.773 0.845
conductor 0.846 0.858 0.93 0.955 0.596 ↓ 0.629 ↓ 0.082 ↓ 0.077 ↓

behavior as the # Males. This finding is interesting because
it suggests that gender diversity can have a positive influence
on reducing design decay symptoms. We also investigated the
reason behind the non-significance of # Females in the other
projects and found that many pull request conversations had no
female participation, which could affect the regression analysis
results. Finally, since our analysis above indicates that gender
diversity is a potential factor that could impact the design, we
are going to keep investigating these metrics in the next RQs
in order to fully understand their behavior in an environment
with a larger sample of data, e.g., grouped by communities
and the projects altogether. Overall, our results highlight the
importance of considering the organizational dynamics when
attempting to mitigate design decay.

Finding 3: Male developers play a significant role in the
design process, while the presence of female develop-
ers can also have a positive impact on design quality,
suggesting that gender diversity may contribute to better
design outcomes in software development projects.

Turnover and decay. We identified that the presence of new
developers in a team (# New Devs) is strongly associated with a

TABLE VII
RESULTS OF MULTIPLE LOGISTIC REGRESSION FOR THE DATA COMBINED

BY THE SOFTWARE COMMUNITIES: GOOGLE, SPRING, AND NETFLIX

Google Spring Netflix
CL ML CL ML CL ML

Communication Dynamics
# Newbies 0.259 ↓ 0.265 ↓ 1.278 ↑ 1.282 ↑ 0.963 0.967
# Contributors 0.299 ↓ 0.281 ↓
# Core Devs 0.523 ↓ 0.476 ↓ 0.119 ↓ 0.119 ↓ 0.955 0.97
Discussion Size 0.185 ↓ 0.162 ↓
MTBC 1.164 1.36 1.308 ↑ 1.336 ↑ 1.056 1.04
TBOF 1.105 1.039 1.403 ↑ 1.397 ↑ 1.446 ↑ 1.46 ↑
TBLM 0.842 ↓ 0.777 ↓ 0.073 ↓ 0.071 ↓ 0.684 ↓ 0.677 ↓
Discussion Content
# Words 26.319 22.847 0.0 ↓ 0.0 ↓ 0.0 ↓ 0.0 ↓
WPCD 0.734 0.985 5.964 ↑ 4.709 ↑ 7.95 ↑ 3.823 ↑
# Design Keywords 1.578 0.861 5.884 ↑ 4.527 5.176 ↑ 3.713
# Refact Keywords 2.609 ↑ 1.443 ↑ 3.873 ↑ 4.149 ↑
DDK 0.558 0.981 0.182 ↓ 0.233 0.188 ↓ 0.263
DRK 0.771 ↓ 0.793 ↓ 0.003 ↓ 0.004 ↓ 0.0 ↓ 0.0 ↓
Organizational Dynamics
Team Size 0.632 ↓ 0.614 ↓ 0.766 ↓ 0.758 ↓
# Females 0.895 ↓ 0.91 0.446 ↓ 0.436 ↓ 0.856 ↓ 0.873 ↓
# Males 0.812 0.922
# New Devs 0.476 ↓ 0.459 ↓

decrease in the design decay symptoms. Previous studies [44],
[45] support our finding that newcomers typically do not
introduce new code smells, as more experienced developers
handle more complex and critical tasks. Our analysis of
this metric revealed statistical significance in nine out of 11
projects, with a strong relationship indicated by odds ratios
very close to 0 in four out of nine projects. Moreover, previous
studies [46] noted that newcomers tend to avoid handling
complex tasks and are often mentored or accompanied by
experienced developers. Finally, our results suggest that this
dynamic may lead to positive outcomes for software design.

C. Social Aspects by Community

In this RQ we explored the behavior of social aspects in
pull request conversations across various software projects
within the same software community. To achieve this, we



utilized the Multiple Logistic Regression to analyze all the met-
rics across projects belonging to three communities: namely
Google (exoplayer, guava, gson, and guice); Spring (spring-
boot and spring-security); and Netflix (zuul, eureka, hystrix,
and conductor). The goal is to investigate how these social
aspects interact with each other in the presence of multiple
factors. We can see the results of the analysis in the Table VII.
In this table, we can observe that some metrics have blank
cells in their rows. Those blank cells are metrics which have
a pair-wise correlation above 0.7 [40]. They were removed to
avoid the effects of multicollinearity.

The Google Community. Our findings suggest that all three
social aspects – communication dynamics, discussion contents,
and organizational dynamics – have a positive impact on de-
sign. Specifically, metrics related to communication dynamics,
namely # Newbies, # Contributors, # Core Devs, Discussion
Size, and TBLM (Time Between Last Commend and Merge),
are associated with a decrease in design decay symptoms.
Interestingly, the odds ratio indicates that the influence of
# Newbies is stronger than # Contributors, which in turn is
stronger than # Core Devs. This aligns with previous stud-
ies [44], [46], which suggest that less experienced developers
tend to handle less complex tasks, leading to better software
quality. The DRK (Density of Refactoring Keywords) metric,
related to refactoring discussions, is also linked to a decrease
in decay symptoms, implying that discussions focused on
refactoring have a positive impact on design quality.

The organizational dynamics metrics, such as Team Size,
# Females, and # New Devs, also indicate an improvement
in design quality. This finding supports the results of RQ2,
which concludes that a larger team size and greater gender
diversity are associated with a decreased risk of design decay.
In summary, we can say that communication (5 metrics) and
organizational dynamics (3 metrics) are the two aspects that
are more useful for the Google community.

Finding 4: For the Google community, the two most
beneficial aspects were communication dynamics and or-
ganizational dynamics, both being relevant in increasing
the design quality.

The Spring Community. Unlike the Google community,
which had only one statistically significant metric related to
discussion content, here, many of its metrics were significant.
In terms of communication dynamics: # Newbies, MTBC
(Mean Time Between Comments), and TBOF (Time Between
Pull Request Opening and First Comment) showed a tendency
to increase the likelihood of design decay. This tendency for
# Newbies contrasts with the results for Google, suggesting
that, here, new developers may be involved in more complex
tasks, leading to design decay. Additionally, the results for
MTBC and TBOF align with our reasoning, since the develop-
ers involved in the discussion were not engaged, they may have
missed design issues that could end up in the merged code. On
the other hand, # Core Devs and TBLM (Time Between Last
Comment and Merge) showed a risk-decreasing tendency for

decay, demonstrating that the presence of more experienced
developers in discussions was helpful to maintain the design.
Moreover, the final feedback of the pull requests was crucial
in keeping the developer engaged and focused on the task,
ensuring it was merged without compromising design.

As previously mentioned, several metrics related to the
discussion content aspect appeared as statistically significant:
# Words, DDK (Density of Design Keywords), and DRK
(Density of Refactoring Keywords) presented a risk-decreasing
tendency, while their counterparts WPCD (Words Per Com-
ment in Discussion), # Design Keywords, and # Refactoring
Keywords presented a risk-increasing tendency. This finding is
noteworthy because it suggests that pull request conversations
with a high number of words and a high proportion of design-
related keywords can help preserve the design. This result will
be further discussed in the next RQ. Finally, the organizational
dynamics aspect only had one statistically significant metric,
with a risk-decreasing tendency, which was the number of
female developers. This result was also observed in the Google
community, providing further support for the importance of
gender diversity in improving the design quality.

Finding 5: For the Spring community, the two most
beneficial aspects were communication dynamics and dis-
cussion content, both aspects presented metrics related to
the increasing and decreasing of design decay symptoms.

The Netflix Community. Upon analyzing the results for
this community, we observed that it differs from the other
communities in terms of relevant social aspects. Table VII
shows that only two metrics from the communication dynamics
aspect, two from the organizational dynamics, and all from
the discussion contents showed statistical significance. Further-
more, we can see both increasing and decreasing tendencies
in the metrics regarding the design decay symptoms. In the
communication dynamics, the metrics TBOF (Time Between
Pull Request Opening and First Comment) and TBLM (Time
Between Last Comment and Merge) showed contrasting re-
sults. While TBOF was related to the increasing of design
decay symptoms, consistent with the findings from the Spring
community, TBLM showed the opposite behavior.

This finding is consistent with our rationale, and also high-
lights the significance of providing prompt feedback within
the community, as it helps to maintain high engagement,
and, consequently, the design quality. The discussion content
aspect have the same behavior of the Spring community, with
# Words, DDK (Density of Design Keywords), and DRK
(Density of Refactoring Keywords), presenting a relation with
design improvement, and WPCD (Words Per Comment in
Discussion), # Design Keywords, and # Refactoring Keywords
a relation with design decay. These findings will be discussed
in more detail in the results of RQ4. Finally, the organizational
dynamics aspect for the Netflix community indicates that both
Team Size and # Females developers were associated with a
decrease in design decay symptoms, which supports the results
of RQ2 and strengthens these findings.



TABLE VIII
RESULTS OF MULTIPLE LOGISTIC REGRESSION FOR THE DATA COMBINED

OF ALL PROJECTS.

method-level class-level

Communication Dynamics
# Newbies 0.823 ↓ 0.829 ↓
Discussion Size 0.253 ↓ 0.257 ↓
MTBC 1.061 1.086
TBOF 1.322 ↑ 1.318 ↑
TBLM 0.946 0.932
Discussion Content
# Words 1.358 ↑ 1.397 ↑
WPCD 0.799 ↓ 0.766 ↓
# Design Keywords 1.08 1.015
# Refact Keywords 2.828 ↑ 3.1 ↑
DDK 0.877 0.917
DRK 0.359 ↓ 0.336 ↓
Organizational Dynamics
Team Size 0.776 ↓ 0.766 ↓
# Females 0.836 ↓ 0.85 ↓

Finding 6: For the Netflix community, the most relevant
aspect was the discussion content. However, the results
for the communication dynamics and organizational dy-
namics aspects also provide valuable insights on how to
manage design quality.

In conclusion, while various social aspects are consistently
relevant across different projects and communities, each com-
munity has its own set of aspects that can be utilized to ensure
the preservation of design quality.

D. Social Aspects and Design Decay

To address the RQ4, we applied the same methodology
of the RQ2 and RQ3. However, in this RQ, we applied the
Multiple Logistic Regression in all metrics of the 11 projects
combined. Table VIII shows the results of this analysis. Similar
to the previous RQ, the gray cells and the arrows have the
same meaning. Moreover, we can observe that some of the
metrics are missing, because those metrics had a pair-wise
correlation above 0.7 [40]; and they were removed to avoid
the effects of multicollinearity. Finally, we can also observe a
consistency between class-level and method-level design decay
symptoms, as the metrics were significant and maintained the
same behavior (arrow) in both levels.

Communication Dynamics improves design quality. Our
study revealed important factors of communication dynamics
that are related to design decay. In particular, we found that
pull request conversations with a high volume of comments
(Discussion Size) and a higher number of newbies (# Newbies)
are associated with a lower likelihood of design decay. We
observed an average of 10 comments and two newbies per pull
request. The maximum number of comments in a single pull
request is 60 within the Netflix community, while the Spring
community has a maximum of six newbies per pull request.
These results suggest that open and collaborative discussions
among team members help to identify and address potential
design issues early on in the development process.

Delayed feedback deteriorating design quality. We also
observed that longer times between the opening of a pull
request and the first comment, metric TBOF (Time Between
Pull Request Opening and First Comment), are associated with
an increase in the design decay symptoms. We observed that
the average duration between the opening of a pull request and
the first comment is 40 days. The Spring community exhibited
the longest duration, with 2600 days between these events.
This finding indicates that timely feedback and response to
pull requests are critical in order to maintain the quality of
the software design. Our results highlight the importance of
effective communication and collaboration within software
development teams, and emphasize the need for prompt and
regular feedback in order to avoid design decay. Our findings
underscore the significance of efficient communication and
collaboration among team members, offering valuable insights
to guide best practices for software development teams.

Finding 7: Faster feedback, high engagement in the
communication, and participation of stakeholders can
mitigate the risk of design decay.

Discussion Content needs substantial engagement in the
topic to improve the design. While analyzing the results, we
found that a higher number of words (# Words) and refactoring
keywords (# Refactor Keywords) in pull request conversations
were associated with a greater risk of design decay. In contrast,
the density of design keywords (DDK) and words per comment
in discussions (WPDD) were found to be positively related to
the improvement of the design. Moreover, we found similar
results for this set of metrics in RQ3 across two different com-
munities, which only strengthens these findings. Furthermore,
maintaining a balance between the amount of discussion and
the inclusion of relevant keywords is essential for mitigating
design decay. The reason is that simply having a high number
of words and refactoring keywords in a discussion does not
necessarily contribute to design improvement. Instead, we
found that a high number of words and keywords in multiple
comments is more likely to lead to design improvement.
This means that a design-focused discussion with multiple
participants contributing substantial comments is the key for
the improvement of the design symptoms.

Finding 8: Discussions focused on refactoring with mul-
tiple participants and large comments improve design,
while a high number of words and refactoring keywords
alone do not.

Gender Diversity and Team Size. We found that the
number of females (# Females) in a development team and
the team size were both related to a decrease in design decay.
These findings suggest that a diverse range of perspectives and
experiences within a team may contribute to more effective
design decision-making and better outcomes in the long term.
These results are also interesting when we look into our
findings in RQ2, where we found that the number of males
(# Males) in the team is also related to the improvement of



the design symptoms. With that in hand, we can state that
gender diversity may play an important role in mitigating
design decay, and that team size (Team size) can also have a
significant impact on design outcomes. These results highlight
the importance of creating teams that are both diverse and
well-resourced, with enough members to effectively manage
and maintain design decisions over time.

Finding 9: The presence of more female developers
and larger team sizes were found to be associated with
a decreased risk of design decay in the study. The
findings suggest that gender diversity and teamwork are
important factors in preventing design decay in software
development teams.

V. THREATS TO VALIDITY

Construct and Internal Validity. The results of this study
may have been influenced by factors such as the precision
and recall of degradation symptoms. To address this potential
threat, we utilized Organic tool [12] to detect the class and
method-level degradation symptoms analyzed in this paper.
Thus, the detection strategies and thresholds utilized by Or-
ganic may introduce bias to the results, but this tool has
been previously used and validated by several papers [6], [7],
[13], [47], and the detection strategies it uses also come from
previous studies on smell detection [48].

This study may not represent a holistic view of all social
aspects and interactions that may affect software development.
This threat was taken into consideration when we defined the
set of metrics and software projects analyzed in this work.
Due to this threat, we also defined a strict methodology for
the execution of the statistical analysis executed in this work.
However, we are aware that some metrics chosen may not paint
an entirely accurate depiction of reality. The gender metric,
for example, was estimated based on an optional field (name)
mined from GitHub profiles.

Conclusion and External Validity. In order to mitigate
potential problems with external validity, we performed our
analyses carefully. In the descriptive analysis, multiple authors
contributed to reviewing and refining the results. With respect
to the statistical analysis, we did not use a normal distribution
due to the skewness of the data, to avoid mismatch between
the statistical method and the dataset. Instead, we used the
Wilcoxon Rank Sum Test [38], which is non-parametric. For
the regression analysis, we performed additional transforma-
tions (log2 and x3) to reduce the skewness of the metrics. We
also removed the predictors with pair-wise correlations above
0.7. This was done in order to avoid the multicollinearity of
predictors from potentially affecting the results of the multiple
regression model [40]. Furthermore, in order to ensure normal-
ity, we normalized the continuous predictors in the model.

Due to aforementioned constraints, we also limited our
investigation of design symptoms to systems developed in
Java. Due to this, our results might have a bias towards the
structure of Java-based systems. However, this threat can also

be mitigated by the fact that Java is one of the most popular
programming languages, both in the industry and in academia.

VI. CONCLUSION AND FUTURE WORK

This study explored the relationship between social aspects
found within pull requests conversations and design decay
symptoms. To achieve this, we first identified 18 types of
design decay symptoms, which were categorized as class-level
and method-level smells. Then, we analyzed social metrics to
determine which ones were the most prominent to differentiate
between decayed and non-decayed merged pull requests. In ad-
dition, the study investigated the extent to which organizational
dynamics influenced the occurrence of design decay. This
involved analyzing factors such as the gender diversity, team
size and the turnover of the team. Furthermore, we analyzed
the influence of three social aspects: communication dynamics,
discussion content, and organizational dynamics on the design
decay within three software communities: Google, Spring, and
Netflix. Finally, we studied how the social aspects influenced
the design decay when considering the projects altogether.
Overall, the study provides valuable insights into the factors
that contribute to design decay in software development teams,
and highlights the importance of effective communication
among team members to mitigate the risk of design decay.

From that analysis, we have the following findings: (i) the
size and duration of the discussion, the use of design and
refactoring keywords, and the team size and gender diversity
are the key metrics in distinguishing impactful from unimpact-
ful pull requests; (ii) a larger team and the gender diversity
are crucial indicators of improvement in the design quality;
(iii) each software community has its own set of social aspects
that are most useful in identifying design decay; (iv) improve-
ments in design can be achieved through prompt feedback,
active participation in communication, and discussions that
are focused on refactoring with the involvement of multiple
participants who make substantial comments. These results are
important for communities/companies, since they can be able
to identify behaviors that are beneficial to the design before
the code being merged in the codebase.

Regarding future work, we plan to develop a machine learn-
ing model to automatically detect pull requests that may be at
risk of experiencing an increase in design decay symptoms.
This model will be integrated into a GitHub Bot that can be
installed in the repository to monitor pull requests and alert
developers responsible for them.
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between Complexity, Explicitness, Effectiveness of Refactorings and
Non-Functional Concerns,” in 34th Brazilian Symposium on Software
Engineering (SBES), 2020, pp. 788–797.
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