
Predicting Design Impactful Changes in Modern
Code Review: A Large-Scale Empirical Study

Anderson Uchôa∗, Caio Barbosa∗, Daniel Coutinho∗, Willian Oizumi∗, Wesley K. G. Assunção∗,
Silvia Regina Vergilio†, Juliana Alves Pereira∗, Anderson Oliveira∗, Alessandro Garcia∗
∗Informatics Department, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

†Computer Science Department, Federal University of Paraná (UFPR), Brazil

Abstract—Companies have adopted modern code review as a
key technique for continuously monitoring and improving the
quality of software changes. One of the main motivations for
this is the early detection of design impactful changes, to prevent
that design-degrading ones prevail after each code review. Even
though design degradation symptoms often lead to changes’
rejections, practices of modern code review alone are actually
not sufficient to avoid or mitigate design decay. Software design
degrades whenever one or more symptoms of poor structural
decisions, usually represented by smells, end up being introduced
by a change. Design degradation may be related to both technical
and social aspects in collaborative code reviews. Unfortunately,
there is no study that investigates if code review stakeholders,
e.g, reviewers, could benefit from approaches to distinguish and
predict design impactful changes with technical and/or social
aspects. By analyzing 57,498 reviewed code changes from seven
open-source systems, we report an investigation on prediction of
design impactful changes in modern code review. We evaluated
the use of six ML algorithms to predict design impactful changes.
We also extracted and assessed 41 different features based on
both social and technical aspects. Our results show that Random
Forest and Gradient Boosting are the best algorithms. We also
observed that the use of technical features results in more precise
predictions. However, the use of social features alone, which
are available even before the code review starts (e.g., for team
managers or change assigners), also leads to highly-accurate
prediction. Therefore social and/or technical prediction models
can be used to support further design inspection of suspicious
changes early in a code review process. Finally, we provide an
enriched dataset that allows researchers to investigate the context
behind design impactful changes during the code review process.

Index Terms—design changes; code review; machine learning

I. INTRODUCTION

Modern code review is a practice that has been widely
adopted by major companies [1], [2]. It is typically a
lightweight, informal, asynchronous, and tool-assisted prac-
tice aimed at monitoring, detecting and removing issues that
were introduced during development tasks [2]. Supported by
platforms such as Gerrit and GitHub, the code review process
is initiated by one developer referred to as the owner, which
modifies the original codebase and submits a new code change
to be reviewed by other developers – the so-called reviewers.

A key concern of all stakeholders involved in a code review,
including code owners, reviewers, and team managers, is to
become aware of ongoing changes impacting the design [3]–
[5]. The underlying motivation is to monitor and inspect those
design impactful changes so that stakeholders can anticipate,
find, and remove signs of design degradation before the end of

a code review. Otherwise, those design harmful changes can
become prevalent after the code review [6], [7]. If design im-
pactful changes are not discriminated and brought to attention
early, it will increase the likelihood of those changes finding
their way into the software system for several reasons. These
include reviewers deviating their effort to other quality checks
in later review stages or even starting to focus only on the
main purpose of the issue being resolved. Moreover, design-
related changes become harder to revert towards the end of the
review as many other inter-related modifications were already
realized as the review progresses. In fact, these reasons explain
why many design impactful changes get unnoticed as nearly
40% of pull request rejections are related to design issues [8].

Early identification of impactful changes that degrade the
software design is important during code review [3], [9],
[10]. Code reviewers are expected to inspect ongoing changes
and provide prompt feedback to code owners in the form of
comments. In turn, the code owner should fix and forward the
new version of the code for inspection. Such a procedure is
repeated in multiple iterations, which are called revisions. This
sequence of revisions ends up with either the acceptance or
rejection of the change into the codebase [11], [12].

Despite its importance, recent studies found these modern
code review practices are far from being sufficient to prevent
design-degrading changes [3], [13]. Design degradation occurs
whenever a change introduces poor structural decisions, i.e.,
design smells [14]–[17]. Tools for detecting design smells tend
to be inefficient when a change is still at its early stages. For
instance, the full addition of a new feature can be complex
and its realization needs many revisions to be accomplished.
Moreover, other types of change can be complex as well. In
fact, several changes in software projects are fully realized
only after many revisions in a single review.

If these harmful changes are not reversed early, i.e., before
a code review is ended, rework will be necessary after the
changes of the last merged revision. Further changes with
time-consuming refactorings will have to be applied later.
Given the costs of design refactorings, they are unlikely to
be applied and smells will be compounded over time, thereby
accelerating the design degradation [3], [4], [18].

Due the importance of the early identification of design rele-
vant changes during the review process, stakeholders must use
all available information during the code reviewing process.
In code review platforms, stakeholders have either technical

c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.
To be published in the Proceedings 18th International Conference on Mining Software Repositories (MSR), 2021 in Madrid, Spain.

or social information at their disposal to be used as additional
information, both before or after each change. Social informa-
tion are often available as soon as code review starts. Social
information includes: number of prior code changes submitted
by the code owner, and centrality of the code owner on
the collaboration graph [19]–[22]. Technical information are
available after changes and revisions done during the review.
Examples of technical information include: number of times
a file has been changed and types of change [19], [23]–[25].

The advantage of using technical and social metrics to char-
acterize and predict failures have widely been studied [26]–
[29]. However, their use to discriminate and predict design
impactful changes is rarely studied [3], [13]. In fact, such met-
rics can act as indicators of design impactfulness of ongoing
changes along the code review process. Hence, to the best of
our knowledge, there is no study on which types of metrics
can be used as effective features in Machine Learning (ML)
algorithms to accurately predict design impactful changes.

This paper presents results of a large-scale empirical study
that investigates whether and how technical and social metrics
can be used to predict design impactful changes. To this end,
we analyzed more than 50k code reviews of seven real-world
systems from two large open source communities. We mined
and examined if a comprehensive suite of technical and social
metrics can discriminate design (un)impactful changes. Then,
we explored the use of these metrics, as features for six
interpretable ML algorithms, which tend to offer an effective
prediction for different tasks and contexts, e.g., [29], [30].
Finally, we evaluated the predictive power of the selected
features and algorithms to assist developers to automatically
determine whether a code change is impactful.

Our key findings and contributions are: (1) both social and
technical metrics are able to distinguish design (un)impactful
changes; (2) the use of technical features results in more accu-
rate predictions, when compared to the social ones; (3) features
related to the code change, commit message, and file his-
tory dimensions are effective for differentiating (un)impactful
changes; (4) Random Forest and Gradient Boosting have
shown to be the most accurate in predicting design impactful
changes; and (5) an enriched dataset and replication package
that allows researchers to investigate the context and motiva-
tions behind design impactful changes during code reviews.

II. MOTIVATING EXAMPLE

Next we show the importance of considering design impact
and using social and technical aspects during code review. To
this end, we rely on two scenarios of the jgit system in which
code review is conducted on the Gerrit platform.

Scenario A. Let us consider the review 3345 [31], com-
posed of seven revisions, in which two developers performed a
major change to “Replace TinyProtobuf with Google Protocol
Buffers”. After the last revision, 12,215 insertions and 2,404
deletions were performed in 58 files. Additionally, 104 design
smells were introduced, leading to structural degradation re-
lated to the lack of abstraction (46), encapsulation (17), and

modularity (42). Interestingly, design impact was not men-
tioned during revisions of the reviews of this major change.
In other words, the replacement of a third-party component
was conducted without an explicit concern with possible side
effects that the change could introduce into the system.

Scenario B. Now consider the review 825 [32], which aims
to “Implement a Dircache checkout (needed for merge)”. This
review had four reviewers and 18 revisions. After the first
revision (R1), we observed a inclusion of three smells: two
Unutilized Abstraction and one Insufficient Modularization.
Such smells were perceived by a developer, according to the
following comment: “One problem I faced here: we do have
an abstraction to access the WorkTree when walking (reading)
on it.” Additionally, during the revisions (R3 to R10), we
observed removals and reintroductions of the smells Unutilized
Abstraction and Insufficient Modularization, characterizing
a high fluctuation of design degradation during revisions.
In other words, despite the developers identify degradation
symptoms, they still are not able to see all the ramifications
and impacts of their changes along with revisions.

Both scenarios illustrate the need for mechanisms to aid
developers on identifying and preventing design impactful
changes. Such mechanisms can rely on the large, diverse, rich
information from social and technical aspects of the system
and stakeholders in the code review. In Scenario A, when
developers are unaware of the design impact of their change,
a mechanism could have supported reviewers by automatically
analyzing the discussions that took place on previous revisions
and the components involved in the changes to predict the
impact of changes in the current revision on the system
design. In Scenario B, a mechanism could have analyzed
the previous behavior of the code owner, and reviewers could
better understand which changes are harming the source code.

In this context, one could argue: why not only using existing
tools, such as Designite [33], to identify design degradation?
Despite useful, such tools are limited. Besides the reasons
already mentioned in Section I, they rely only on static analysis
in which detection strategies do not adapt per revision, not
exploring the history of changes and multiple sources of
information. They ignore the variation of technical and social
aspects inherent to the code review process [3], [13], [20].

In summary, the motivations for our work are: (i) a real-
world need for mechanisms to aid stakeholders in identifying
impactful design changes during code review, (ii) availability
of large and rich sources of information that can be used to
make stakeholders aware of their changes’ impact, and (iii)
limitation of existing tools on using historical and dynamic
information to support stakeholders during code review.

III. STUDY SETTINGS

A. Research Questions

Our study is guided by four research questions (RQs).
RQ1: Are design impactful changes significantly differ-

ent from unimpactful ones in terms of social and technical
metrics? – Social and technical aspects may be avoiding or
amplifying design degradation. To capture such aspects, we

used a set of metrics detailed in Section III-E. RQ1 aims at
investigating which metrics are able to distinguish between
design impactful changes and unimpactful ones.

RQ2: What is the performance of ML algorithms to predict
design impactful and unimpactful changes? – Once we show
empirical evidence that distinguishes impactful and unimpact-
ful changes, RQ2 aims at investigating the use of supervised
ML techniques to assist developers in automatically make their
decisions. In practice, some prediction algorithms perform
better than others, depending on the task. Thus, we compare
the performance of six interpretable ML algorithms: Logistic
Regression, Naive Bayes, SVM, Decision Tree, Random For-
est, and Gradient Boosting. We chose these algorithms since
they provide an intuitive and easy to explain model [34], [35].

RQ3: How effective are the social and technical features
as a proxy to the design impactfulness changes? – RQ3

aims at evaluating and comparing the performance of both
kinds of features. To this end, we applied the ML algorithm
using three feature sets: a set using only social features, a
set using only technical ones, and a set using technical and
social features together. By answering RQ3, we will be able to
identify which kind of features are the best predictor, as well
as the effectiveness of combining social and technical features.
Furthermore, we also evaluated the effectiveness of a feature
selection step for the three sets.

RQ4: What features are the best indicators of impactful de-
sign changes? – RQ4 aims at understating which features are
considered the most relevant by the models. Such knowledge
is essential because, in practice, a model should be as simple
as and require as little data as possible. By answering RQ4, we
will be able to provide insights to practitioners and researchers
as to what factors best indicate design impactful changes.

B. Code Review Data

To answer our RQs, we need not only information of the
source code to distinguish design impactful changes, but also
to analyze every code revision submitted along the code review
process and investigate technical and social information related
to those revisions. Thus, instead of mining code review data
ourselves, we used the data provided by the Code Review
Open Platform (CROP) [36], an open-source dataset that links
code review data to software changes. All systems in CROP
employ Gerrit as their code review tool. Hence, by using
CROP, we have access to a rich dataset of code changes. To
this end, given a certain system, CROP provides a complete
copy of the entire codebase for each revision and its respective
parent, which represents the system’s codebase at the time of
review. In other words, unlike the Git repository of a system,
which contains only accepted revisions (i.e., the changes in
the final revisions in a review), the CROP stores all revisions.

In our study, we adopt all Java systems included in the
CROP dataset: four systems from the Eclipse community and
three systems from the Couchbase community, as presented
in Table I. For sake of completeness, we remove the reviews
whose status is “Open” since they may not have been assigned
to reviewers, and the set of reviewers may still change.

TABLE I
SOFTWARE SYSTEMS INVESTIGATED IN THIS STUDY

Community System # of Reviews # of Revisions Time span
jgit 5,304 13,578 10/09 to 11/17
egit 5,220 12,814 9/09 to 11/17
platform.ui 4,527 13,418 20/13 to 11/17Eclipse

linuxtools 4,074 11,418 6/12 to 11/17
java-client 909 2,622 11/11 to 11/17
jvm-core 828 2,269 4/14 to 11/17Couchbase
spymemcached 536 1,379 5/10 to 7/17

C. Detection of Degradation Symptoms within Code Reviews

We investigated two categories of degradation symp-
toms, which are fine-grained (FG) and coarse-grained (CG)
smells [37]. Although we do not focused on architectural
smells, we empirically observed they follow similar trends in a
complementary analysis. FG smells are indicators of structural
degradation in the scope of methods and code blocks [37].
For instance, the Long Method is a FG smell that occurs in
methods that contain too many lines of code. CG smells are
symptoms that may indicate structural degradation related to
object-oriented principles, e.g., abstraction, encapsulation, and
modularity [37], [38]. An example of CG smell is Insufficient
Modularization [37]. This symptom occurs in classes that are
large and complex due to the accumulation of responsibilities.
Such categories encapsulate a set of symptoms that are more
perceived and used by developers in practice to identify and
refactor source code locations degraded [15], [39]–[41].

For automatically detecting symptoms of such categories,
we used a state-of-the-practice tool called DesigniteJava [33],
which detected a total of 27 degradation symptoms types:
17 CG smells, and 10 FG smells. Hence, for each system,
we identified these symptoms by considering each submitted
revision that has undergone the code review process. Thus,
we used CROP to access the versions of the system before
and after the revision took place. Next, we detected the degra-
dation symptoms in each version before and after revision.
By following this methodology, we are guarantee that the
introduced degradation symptoms between each version were
solely introduced by the code changes in the revision. Table II
lists the 27 symptoms types investigated in our study. We
provide all descriptions, detection strategies, and thresholds
for each type of symptom in the replication package [42].

TABLE II
DEGRADATION SYMPTOMS INVESTIGATED IN THIS STUDY

Coarse-grained Smells
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction, Unnecessary Abstraction,
Deficient Encapsulation, Unexploited Encapsulation, Broken Modularization, Insufficient Modularization,
Hub Like Modularization, Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy, Broken Hierarchy.
Fine-grained Smells
Abstract Function Call From Constructor, Complex Conditional, Complex Method, Empty Catch Block,
Long Identifier, Long Method, Long Parameter List, Long Statement, Magic Number, Missing Default.

D. Identification of Design Impactful Change Instances

We identified design impactful change instances in two
steps: (i) identification of smelliness files by considering each
revision of a code change, where each revision was compared
to its parent, i.e., the codebase’s version before any revision;
and (ii) the computation of design degradation indicators.

To illustrate the first step, let Rs = {r1, r2, ..., rn} be the set
of submitted revisions for a given review s. For each revision
in Rs (i.e., ∀ri, ri ∈ Rs), we use the CROP to retrieve the
system’s versions before and after ri. Next, we check the

presence of degradation symptoms (both CG and FG smells)
in the files of ri. The two file sets (before and after) might not
be exactly the same, due to files created and deleted during
the review process. Since the before version of each revision
is its parent, we guarantee that the introduced degradation
symptoms between each version were solely introduced by
the code changes in ri, avoiding the collateral effects of the
rebase [43]. The output of this step is, for each revision in Rs,
the version of the files impacted before and after the revision.

In the second step, we rely on an existing grounded the-
ory [15] that explains that developers tend to consider multiple
degradation characteristics in terms of density and diversity
of symptoms. In addition, the use of density and diversity
of symptoms for detecting design degradation is supported
by other studies [18], [40]. Such studies show that degraded
code elements tend to be affected by higher diversity and
density of symptoms when compared to other code elements.
However, before selecting diversity and density of symptoms
as metrics, we compared the two lists of smells (by density and
diversity) before and after revisions. As a result, we observed
a small average variation (<1 type of smell/revision). Thus,
computing the degradation in(de)crease with density imposes
only a minor threat. Therefore, we take into account only the
density, as a metric to measure the level of design degradation.

Therefore, for each selected system, we computed this
characteristic in the context of each symptom category (CG
and FG smells), for all the collected revisions. Density was
computed for each version before and after revision, as the sum
of the number of symptom instances in the set of smelliness
source code files. The computation of density before and after
revisions, allowed us to generate two different indicators of
design degradation for each revision, where each indicator
represents the differences in density of FG and CG smells.

In summary, a positive difference in the density of symp-
toms indicates an increase in the degradation as a result of the
revision, therefore, harming the design. Similarly, a negative
difference indicates a reduction of the degradation as a result
of the revision. Finally, no variation indicates that there has
been no structural design change. We consider that a design
change is impactful when an increase or reduction in design
degradation was observed as a result of submitted changes.
Conversely, unimpactful changes are submitted changes that
do not affect design degradation. Table III shows the number
of revisions identified as design (un)impactful changes for each
system and symptom category.

TABLE III
THE NUMBER OF REVISIONS IDENTIFIED AS DESIGN IMPACTFUL CHANGES

Coarse-grained Smells Fine-grained SmellsProject Impactful Unimpactful All Impactful Unimpactful All
java-client 751 (29%) 1,871 (71%) 2,622 1,340 (51%) 1,282 (49%) 2,622
jvm-core 630 (28%) 1,639 (72%) 2,269 1,054 (46%) 1,215 (54%) 2,269
spymemcached 423 (31%) 956 (69%) 1,379 586 (42%) 793 (58%) 1,379
platform.ui 2,431 (18%) 10,987 (82%) 13,418 4,460 (33%) 8,958 (67%) 13,418
egit 2,973 (23%) 9,841 (77%) 12,814 5,192 (41%) 7,622 (59%) 12,814
jgit 3,995 (29%) 9,583 (71%) 13,578 6,082 (45%) 7,496 (55%) 13,578
linuxtools 3,321 (29%) 8,097 (71%) 11,418 4,837 (42%) 6,581 (58%) 11,418
Total 14,524 (25%) 42,974 (75%) 57,498 23,551 (41%) 33,947 (59%) 57,498

E. Features for Design Impactful Change Prediction

We extracted a set of features able to capture both technical
and social aspects of the changes involved in each revision of

a code review. Each feature corresponds to a metric. We detail
each feature and its description per dimension on Table IV.

TABLE IV
TECHNICAL AND SOCIAL FEATURES ADOPTED IN OUR STUDY

Technical Features
Dimension Name Description

NLA Number of inserted lines in this code change
NLD Number of deleted lines in this code change
CHURN Number of lines added to and removed in this code change
NFA Number of added files in this code change

Size

NFD Number of deleted files in this code change
NCF Number of changed files in this code change
NMD Number of modified directories in this code change
ME Distribution of modified code across files in this code change
NLANG Number of programming languages used in this code change

Diffusion

NFT Number of file types in this code change
NSA Number of added code segments in this code change
NSD Number of deleted code segments in this code changeComplexity
NSU Number of updated code segments in this code change
FM Number of times files in this code change were modified beforeFile history FD Number of developers who changed files in this code change
ML Number of words in description of this code change
BUG Whether description of this code change contains word “bug”1

FEAT Whether description of this code change contains word “feature”1

IMPR Whether description of this code change contains word “improve”1

DOC Whether description of this code change contains word “document”1
Textual

REFC Whether description of this code change contains word “refactor”2

Social Features
Dimension Name Description

NC Number of prior code changes submitted by the owner of this code change
NRC NC in recent 120 days
NDC NC that contain at least one directory affected by this code change
NR Number of prior code changes the owner of this code change is assigned to inspect
MR Merged rate of prior code changes submitted by the owner of this code change
RMR MR in recent 120 days and normalized over the recent change number

Developer’s
Experience

DMR MR that contain at least one directory affected by this code change
NIC Number of inline comments made by reviewers.
NWIC Sum of the all words of each inline comment.3

PWIC NWIC weighted by the number of inline comments.3
NGC Number of general comments made by reviewers.
NWGC Sum of the all words of each general comment.3

PWGC NWGC weighted by the number of general comments.3

Discussion
Activity

DL Number of general comments and inline comments written by reviewers
SD The degree centrality for a node v is the fraction of nodes it is connected to.4

SCLOS The inverse of the sum of all distances to all other nodes.4

SB The sum of the fraction of all-pairs shortest paths that pass through v.4

SE The centrality for a node based on the centrality of its neighbors.4

SCLUST The geometric average of the subgraph edge weights.4

Collaboration
networks

SKC Maximal subgraph that contains nodes of degree k or more.4
1And more keywords based on previous work [44], [45]
2And more keywords based on previous work [46]
3We discarded comments made by non-human participants and applied the preprocessing in the text removing
contractions, stop words, punctuation, and replacing numbers
4The initial node is the committer of the revision and all other nodes are the reviewers of each revision

From the technical perspective, we extracted 21 features
related to source code, modification history of the files, and
the textual description of the change. Moreover, these features
were categorized into five dimensions: (i) Size consists of
features related to source in their smallest granularity. Prior
studies have found that large patches may need more effort to
review [47]; (ii) Diffusion comprehends the features about
changes distributed on two or more files (e.g., number of
changed files). Prior studies also found that revisions, where
their changes scatter across a large number of files or direc-
tories, may need more effort to review [19], [25]. Thus, we
expected that the diffusion of a change could influence the
likelihood of the change being impactful; (iii) Complexity
comprehends the features on the complexity of a change. A
code change with more code segments modified is likely more
complex and requires more effort and time to be reviewed [48];
(iv) File history is composed of features related to the history
of the files. The number of prior changes to a file can be a
good indicator to detect degraded files. Moreover, files that
are previously touched by more developers are more likely to
introduce degradation symptoms [23]–[25]; and (v) Textual
consists of features that capture textual characteristics of the
commit message. Previous studies [49], [50] found that the
description length of a patch is related to its likelihood of
receiving poor comments. Additionally, the commit message
may contain more information about a code change that may

help reviewers comprehend the change more easily.
From the social perspective, we extracted 20 features that

characterize the developer’s experience, collaboration network,
and participation in discussions. Moreover, these features were
grouped into three dimensions: (i) Developer’s experience
comprise the features related to the previous experience of
the code change owner. Previous studies [19]–[21] found that
developer experience is essential information for predicting
design issues. Such studies claim that if a developer often
submits changes in recent times prior to the change, they will
be more familiar with the recent developments of the system,
and thus the code change may be fewer design issues; (ii)
Discussion activity comprise the features of communication
between developers and reviewers. In fact, classes having
degraded symptoms can create more discussion among the
reviewers [3], [13]. As well as, discussions with a high
number of comments around code changes would find possible
design symptoms, improving or maintaining the quality; and
(iii) Collaboration networks consists of features of social
networks. Previous studies [20], [22], [48] found that collab-
oration factors (i.e., level of participation within the system)
could influence code review outcomes. For this reason, we
constructed a network based on the collaboration of owners
and reviewers to use the features proposed by [22].

F. Development of the Impactfulness Prediction Models

We experimented with six different (binary classification)
supervised ML algorithms: Logistic Regression, Naive Bayes,
SVM, Decision Tree, Random Forest, and Gradient Boosting.

Training and testing the models. We trained and tested
the models as follows. Firstly, we collected the design
(un)impactful changes instances for a given system. We
merged them into a single dataset, where design impactful
changes instances are marked with a true value, and de-
sign unimpactful changes instances are marked with a false
value. Secondly, before training the models, we dealt with
imbalanced data, a common issue with software engineer-
ing data [51]. In our case, the number of design impactful
changes instances varies; i.e., the design impactful changes
instances might be greater than or smaller than the number
of unimpactful ones. To that end, we relied on the under-
sampling algorithm, which randomly selects instances of the
oversampled class. Thirdly, we scaled all the features to a [0, 1]
range to speed up the learning process of the algorithms [52].
Fourthly, we used the grid search to tune the hyperparameters
of each model using five folds. Grid search is an exhaustive
search that examines all of the combinations of a specified set
of candidate settings to find the best combination [53].

Finally, to train the model, we employed a 10-fold cross-
validation strategy using the hyperparameters established by
the search [54]. This strategy randomly partitions the dataset
into 10 folds of equal size, in which each fold has the same
proportion of the various criticality classes. A single fold is
then used as a test set, while the remaining ones are employed
for training the model, i.e., they are independent of each other.

Performance evaluation. We evaluated the performance
of each generated model, by analyzing confusion matrices,
obtained from the testing strategy described above, and re-
porting the values of well-known measures [55]. Precision
is the percentage of detected code changes that are actually
impactful (Pr = TP

TP+FP). Recall is the percentage of
correctly predicted impactful design change relative to all of
the changes that are actually unimpactful (Re = TP

TP+FN).
The F1-score (F1) is the harmonic mean of precision and
recall. Additionally, to mitigate the limitation of choosing
a fixed threshold when calculating precision and recall, we
compute the Area Under the ROC Curve (AUC) values. AUC is
computed by measuring the area under the curve that plots the
true positive rate against the false positive rate, while varying
the threshold that is used to determine if a design change is
predicted as impactful or unimpactful.

Replication package. All data described previously, fea-
tures used for training and testing the ML algorithms, hyper-
parameters analyzed, generated ML models, as well as the
confusion matrix and statistical analysis are available in [42].

IV. RESULTS AND DISCUSSIONS

A. Design impactful changes vs. unimpactful ones

To answer RQ1, we used the Wilcoxon Rank Sum Test [56]
and the Cliff’s Delta (d) measure [57] to verify which metrics
are able to discriminate between impactful and unimpactful
design changes. To this end, we explore each metric described
in Section III-E. The Cliff’s Delta (d) measure [57] shows how
strong is the difference between design impactful changes and
unimpactful ones in terms of the analyzed metrics. Since we
are performing multiple comparisons, we need to adjust the
p-values to consider the increased chance of rejecting the null
hypothesis simply due to random chance. To do so, we apply
the widely used Bonferroni correction [58], which controls
the familywise error rate. For this method, we consider that
each system is a family, which means that we perform the
correction in the p-values of the features at the system level.

Table V shows the results obtained for coarse- (CG) and
fine-grained (FG) smells, where the 1st column contains the
type of metric while the 2nd column shows the evaluated
metric. The 3rd to 16th columns show the Wilcoxon Test and d
results for each system, each group of two columns represents
the results for CG and FG smells, respectively. Statistical
significant differences (p-value < 0.05) are highlighted as gray
cells. To interpret the Cliff’s Delta (d) effect size, we employ
a well-known classification [59], that defines four categories
of magnitude, which are represented in Table V: negligible
(without symbol), small (*), medium (**), and large (***).
The positive d magnitudes are represented by the (+) symbol
and the negative ones are represented by the (−) symbol.

We emphasize that RQ1 does not consider the FEAT, IMPR,
IMPR, DOC, and REFC metrics since the Wilcoxon Test and
the Cliff’s Delta measure are not suitable for boolean metrics.

Correlation between inline comments and impactful
changes. Among all metrics in the dimension of discussion,
we highlight those related to inline comments, inline comments

TABLE V
STATISTICAL SIGNIFICANCE OF THE WILCOXON RANK SUM TEST AND THE CLIFF’S DELTA (D) FOR COARSE AND FINE-GRAINED SMELLS

Dimension Metric spymemcached java-client jvm-core platform.ui jgit egit linuxtools all
CG FG CG FG CG FG CG FG CG FG CG FG CG FG CG FG

Developer’s
Experience

NC (−) (−) (−) (−) (−) (−)* (−) (−) (−) (−) (−) (−)* (−) (−) (−) (−)
NRC (+) (−) (−) (−) (−)* (−) (−)* (−)* (−) (−) (−) (−) (−) (−) (−) (−)
NDC (+)* (+) (+)* (+)* (+)** (+)** (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)*
NR (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (−) (−) (+) (+)
MR (−) (−) (+) (+) (+) (−) (+) (+) (−) (+) (−) (−) (−) (−) (−) (−)

RMR (−)* (−) (−) (+) (+) (+) (+) (+) (+) (+) (−) (−) (−) (−) (−) (+)
DMR (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

Discussion
Activity

NIC (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
NWIC (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
PWIC (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
NGC (−) (−) (+) (−) (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

NWGC (+) (+) (+) (+) (+) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)
PWGC (+) (+) (+) (+) (+) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

DL (+) (+) (+) (+) (−) (−) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

Collaboration
Networks

SD (−)* (+) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
SCLOS (−)* (+) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)

SB (−) (−) (−) (−) (+) (+) (−) (−) (−) (−) (−) (−) (−) (−) (−) (−)
SE (−)* (−) (−) (−) (−) (+) (−) (−)* (−) (−) (−) (−) (−) (−) (−) (−)

SCLUST (+)* (+) (+) (−) (−) (−) (+) (+) (−) (−) (−) (−) (+) (+) (+) (+)
SKC (+)* (+) (−) (−) (−) (−) (−) (−) (+) (+) (+) (+) (+) (−) (+) (−)

Size

NLA (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)***
NLD (+)* (+) (+)* (+)** (+)** (+)*** (+)* (+)* (+) (+) (+)* (+)* (+)** (+)** (+)* (+)*

CHURN (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)***
NFA (+)*** (+)* (+)*** (+)** (+)*** (+)*** (+)*** (+)* (+)*** (+)* (+)*** (+)* (+)*** (+)* (+)*** (+)*
NFD (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+) (+)

Diffusion

NFC (+)** (+)* (+)** (+)** (+)*** (+)*** (+)* (+)* (+)* (+)* (+)** (+)** (+)** (+)** (+)** (+)**
ND (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)*** (+)** (+)** (+)** (+)*** (+)** (+)*** (+)** (+)*** (+)**
ME (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)*** (+)** (+)** (+)** (+)*** (+)** (+)*** (+)** (+)*** (+)**

NLANG (+) (+) (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)* (+)*
NFT (+) (+) (+) (−) (+) (+) (+)** (+)* (+)* (+) (+)*** (+)* (+)** (+)* (+)** (+)*

Complexity
NSA (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)*** (+)***
NSD (+) (+) (+)* (+)* (+)* (+)* (+)* (+)* (+) (+) (+)* (+)* (+)* (+)* (+)* (+)
NSU (+)* (+)* (+)* (+)* (+)** (+)** (+)* (+)* (+) (+)* (+)* (+)* (+)* (+)* (+)* (+)*

File History FD (+)*** (+)** (+)*** (+)*** (+)*** (+)*** (+)** (+)** (+)* (+)* (+)** (+)** (+)** (+)** (+)** (+)**
FM (+)** (+)* (+)** (+)** (+)** (+)** (+)** (+)** (+)* (+)* (+)** (+)* (+)** (+)** (+)** (+)*

Textual ML (−) (+) (+)* (+)** (+) (+)* (+)* (+)* (+)* (+)** (+)* (+)* (+)* (+)* (+)* (+)*

(NIC), words in inline comments (NWIC), and percentage of
words in inline Comments (PWIC). For CG smells, they were
statistically significant for most systems, except for the java-
client (all three) and jvm-core (PWIC) systems. Such metrics
also showed positive magnitude in all cases. This means that
impactful changes, represented by both CG and FG smells,
are often associated with a higher volume of inline comments.
Nevertheless, the magnitude of these metrics was negligible in
all cases. Thus, we conclude that discussion activity metrics in
isolation are not enough for differentiating impactful changes.

Developer’s experience dimension. The directory changes
(NDC) metric presented consistent results in most systems
both for CG e FG smells. NDC was the only metric in the
developer’s experience dimension that presented small and
medium (and positives) magnitudes across all projects. This
result means that NDC is the best metric in its dimension
for differentiating impactful changes. Collaboration networks
dimension. Results were similar on both CG e FG smells.
Magnitudes were negative in 76% and 80% of cases also for
both smells. Such a result indicates that prior collaboration
between author and reviewers contributes to the production
of changes that do not impact the design. However, in many
cases, the results were not statistically significant.

Finding 1: The usefulness of the metrics from the discus-
sion activity, developer’s experience, and collaboration
networks dimensions to differentiate design impactful
changes is limited. However, the number of directory
changes presents promising results.

Code metrics as strong indicators of impactful changes.
The most relevant metrics for distinguishing between im-
pactful and unimpactful changes were the ones related to
code. Their results were not statistically significant in only
three cases for FG smells. Moreover, with the exception of

the files deleted (NFD) metric in the java-client system, all
code metrics presented positive magnitudes. Among all code
metrics, we highlight the lines added (NLA), changed lines
(CHURN), and segments added (NSA) metrics, which pre-
sented statistically significant results with large magnitude in
all cases, for both types of smells. If we restrict our analysis to
CG smells, the files added (NFA), segments deleted (NSD), and
modify entropy (ME) metrics also stand out. The highlighted
metrics are closely related to the size (NLA, CHURN, NFA)
and complexity (NSA, NSD, ME) of the changes. Thus, such
metrics can be used by reviewers to decide when a change
requires more attention to the design impact.

Textual dimension. The message length (ML) metric
showed statistically significant results with small or medium
positive magnitudes in most cases. We conjecture that this is
because changes with detailed descriptions tend to be more
complex, leading to a higher impact on design. File history
dimension. The file developers (FD) and file modifications
(FM) metrics, showed statistically significant results with pos-
itive magnitudes. In this case, the FD metric showed medium
or large magnitudes in most cases. This result suggests that the
more people interacting with a file set, the greater the chance
that the next changes in such files will impact the design.

Finding 2: Code, textual, and file history dimensions
contain metrics that are relevant to differentiate impactful
changes. The most relevant ones can be combined to
predict changes that require more attention to design.

B. ML performance for predicting design impactful changes

We address RQ2, by reporting and comparing different
models after the 10 stratified cross-fold executions. We apply
stratified sampling in all the cross-fold executions to make
sure both training and test datasets contain the same amount

TABLE VI
PERFORMANCE OF USING DIFFERENT LEARNING ALGORITHMS TO PREDICT DESIGN IMPACTFUL CHANGES

Coarse-grained Smells
SVM (linear) Decision Tree Random Forest Naive Bayes (gaussian) Gradient Boosting Logistic RegressionSystem Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC

spymemcached 0.77 0.55 0.64 0.69 0.92 0.93 0.92 0.92 0.96 0.93 0.94 0.95 0.84 0.28 0.42 0.61 0.94 0.94 0.94 0.94 0.80 0.62 0.69 0.73
java-client 0.80 0.73 0.76 0.77 0.96 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.88 0.41 0.56 0.68 0.97 0.95 0.96 0.96 0.80 0.74 0.77 0.78
jvm-core 0.85 0.76 0.80 0.81 0.95 0.96 0.95 0.95 0.97 0.96 0.96 0.96 0.68 0.92 0.78 0.73 0.96 0.96 0.96 0.96 0.85 0.80 0.82 0.83
platform.ui 0.78 0.51 0.62 0.68 0.90 0.93 0.92 0.92 0.94 0.95 0.94 0.94 0.59 0.88 0.67 0.61 0.93 0.95 0.94 0.94 0.71 0.65 0.68 0.69
egit 0.76 0.62 0.68 0.71 0.89 0.91 0.90 0.90 0.93 0.93 0.93 0.93 0.75 0.56 0.64 0.69 0.93 0.94 0.93 0.93 0.75 0.69 0.72 0.73
jgit 0.72 0.61 0.66 0.69 0.90 0.91 0.91 0.91 0.95 0.93 0.94 0.94 0.67 0.58 0.59 0.63 0.94 0.94 0.94 0.94 0.74 0.70 0.72 0.73
linuxtools 0.75 0.62 0.68 0.71 0.92 0.94 0.93 0.93 0.96 0.96 0.96 0.96 0.82 0.18 0.29 0.57 0.95 0.96 0.96 0.96 0.73 0.71 0.72 0.72
All 0.70 0.61 0.66 0.68 0.86 0.87 0.86 0.86 0.93 0.92 0.93 0.93 0.65 0.64 0.64 0.64 0.93 0.92 0.93 0.93 0.70 0.70 0.70 0.70
Average 0.77 0.63 0.69 0.72 0.91 0.93 0.92 0.92 0.95 0.94 0.95 0.95 0.74 0.56 0.57 0.65 0.94 0.95 0.95 0.95 0.76 0.70 0.73 0.74
Median 0.77 0.62 0.67 0.70 0.91 0.93 0.92 0.92 0.96 0.94 0.94 0.95 0.72 0.57 0.62 0.64 0.94 0.95 0.94 0.94 0.75 0.70 0.72 0.73

Fine-grained Smells
SVM (linear) Decision Tree Random Forest Naive Bayes (gaussian) Gradient Boosting Logistic RegressionSystem Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC

spymemcached 0.89 0.80 0.84 0.85 0.95 0.96 0.95 0.95 0.97 0.97 0.97 0.97 0.92 0.38 0.53 0.67 0.97 0.97 0.97 0.97 0.90 0.82 0.86 0.86
java-client 0.84 0.74 0.79 0.80 0.90 0.95 0.92 0.92 0.94 0.97 0.95 0.95 0.92 0.50 0.64 0.73 0.93 0.96 0.95 0.95 0.84 0.76 0.80 0.81
jvm-core 0.89 0.74 0.81 0.82 0.93 0.96 0.95 0.94 0.96 0.97 0.97 0.97 0.80 0.76 0.77 0.78 0.95 0.97 0.96 0.96 0.88 0.77 0.82 0.83
platform.ui 0.80 0.55 0.65 0.71 0.92 0.96 0.94 0.94 0.96 0.97 0.97 0.97 0.75 0.44 0.50 0.62 0.96 0.97 0.97 0.97 0.79 0.66 0.72 0.74
egit 0.85 0.72 0.78 0.80 0.91 0.95 0.93 0.93 0.95 0.96 0.96 0.96 0.84 0.62 0.71 0.75 0.95 0.97 0.96 0.96 0.84 0.76 0.80 0.81
jgit 0.90 0.62 0.73 0.77 0.91 0.93 0.92 0.92 0.96 0.95 0.95 0.95 0.91 0.36 0.52 0.66 0.96 0.95 0.96 0.96 0.86 0.71 0.78 0.80
linuxtools 0.82 0.65 0.72 0.75 0.92 0.95 0.93 0.93 0.95 0.97 0.96 0.96 0.90 0.23 0.36 0.60 0.95 0.97 0.96 0.96 0.81 0.72 0.76 0.77
All 0.74 0.67 0.70 0.72 0.88 0.90 0.89 0.89 0.95 0.94 0.95 0.95 0.68 0.67 0.67 0.67 0.95 0.94 0.94 0.94 0.75 0.70 0.72 0.73
Average 0.84 0.69 0.75 0.78 0.92 0.95 0.93 0.93 0.96 0.96 0.96 0.96 0.84 0.50 0.59 0.69 0.95 0.96 0.96 0.96 0.83 0.74 0.78 0.79
Median 0.85 0.70 0.76 0.79 0.92 0.95 0.93 0.93 0.96 0.97 0.96 0.96 0.87 0.47 0.59 0.67 0.95 0.97 0.96 0.96 0.84 0.74 0.79 0.81

of design (un)impactful changes instances. Table VI shows the
precision (Pr), recall (Re), F1-score (F1), and AUC values of
each ML algorithm for each target system and smell levels.
The row “all” represents the generated model, when training
and testing in the entire dataset and using all features.

The performance of ML algorithms for predicting design
impactful changes. Table VI shows that for coarse-grained
smells, the average of precision values across models ranges
between 0.74 and 0.95, while the recall values range between
0.56 and 0.95. Similarly, the F1-score values range between
0.57 and 0.95, while the AUC values range between 0.65 and
0.95. A similar observation applies when we consider fine-
grained smells, in which the average of precision, recall, F1-
score, and AUC values ranges between 0.83 and 0.96, 0.50
and 0.96, 0.59, and 0.96, and 0.69, and 0.96, respectively.

To assess statistical differences between the models, we
applied Friedman non-parametric test [60] with Nemenyi’s
post hoc multiple pairwise comparison (p-value ≤0.05). We
observed that both Random Forest and Gradient Boosting
outperformed the other ML models at coarse-grained (CG) and
fine-grained (FG) levels, with significant difference according
to the statistical test. Furthermore, both Random Forest and
Gradient Boosting present a similar performance, i.e., without
a statistical difference, considering the CG level, with a similar
average of 0.95 for both F1 and AUC. However, with a slight
difference of 1% for the average of precision and recall values.
A similar observation applies when at FG level. Moreover, to
ascertain if the level of accuracy is adequate, we compared our
model performance results with other approaches both for ML-
based smell detection [61], [62] and code review analysis [63].
On average, our two best models achieved similar or better
performance results than those previous works.

Finding 3: Random Forest and Gradient Boosting are
the most accurate in predicting design impactful changes
within code reviews. Both algorithms achieve an average
of F1-score of 0.95 and 0.96, for predicting design
impactful changes at a CG and FG level, respectively.

C. The role of social and technical features as predictors

We address RQ3, by investigating the performance of differ-
ent feature sets as a proxy to predict design impactful changes

at CG and FG smell levels, namely (i) social features only,
(ii) technical features only, and (iii) social + technical features
together. Additionally, and given the great number of features,
we investigate the difference of the impactfulness prediction
between to use or not a step for feature ranking and selection.
Instead of simply removing the highly-correlated features by
following a filtering method, we decided to apply a wrapper
method to feature selection. We applied feature ranking with
recursive feature elimination and cross-validated selection of
the best number of features for our data. For feature ranking
and selection we used the RFECV function available in the
scikit-learn’s feature selection package [64]. We run RFECV
using 5-fold cross-validation and SVC linear as the estimator.
After the cross-validation process, and RFECV recommen-
dations, three new sets, namely feature selection sets, were
generated, a set with 19, 9, and 40 features respectively for the
social, technical, and social + technical dimensions. Similarly
to RQ2, we check the statistical difference of the results using
Friedman test [60] and Nemenyi’s post hoc multiple pairwise
comparison, with a confidence level of 95%.

The effectiveness of social and technical features as
predictors to design impactful changes. To evaluate the
effectiveness of social and technical features, we rely on
the best ML algorithms, i.e., Random Forest and Gradient
Boosting, based on the RQ2 results. Table VII shows the mean
values of precision (Pr), recall (Re), F1-score (F1), and AUC
for both algorithms, grouped by dimension and feature set.

TABLE VII
PERFORMANCE OF SOCIAL AND TECHNICAL FEATURES AS PROXY TO

PREDICT DESIGN IMPACTFUL CHANGES

Random Forest
Coarse-grained Smells Fine-grained SmellsDimension Feature set Pr Re F1 AUC Pr Re F1 AUC

all features 0.80 0.81 0.81 0.80 0.79 0.79 0.79 0.79Social feature selection 0.80 0.81 0.81 0.80 0.79 0.79 0.79 0.79
all features 0.96 0.96 0.96 0.96 0.94 0.94 0.94 0.94Technical feature selection 0.90 0.93 0.91 0.91 0.94 0.94 0.94 0.94
all features 0.95 0.94 0.95 0.95 0.93 0.92 0.93 0.93Social + technical feature selection 0.87 0.91 0.89 0.88 0.93 0.92 0.93 0.93

Gradient Boosting
Coarse-grained Smells Fine-grained SmellsDimension Feature set Pr Re F1 AUC Pr Re F1 AUC

all features 0.82 0.83 0.82 0.82 0.80 0.81 0.80 0.80Social feature selection 0.81 0.83 0.82 0.82 0.80 0.81 0.80 0.80
all features 0.95 0.96 0.96 0.96 0.94 0.94 0.94 0.94Technical feature selection 0.90 0.92 0.91 0.91 0.94 0.94 0.94 0.94
all features 0.95 0.94 0.94 0.94 0.93 0.92 0.93 0.93Social + technical feature selection 0.88 0.91 0.90 0.89 0.93 0.92 0.93 0.93

We observed that social features for impactful changes, at
both levels of granularity, reached mean values of Pr, Re, F1,

and AUC around 0.8. A similar performance is reached when
feature selection was used. Technical features reach mean
values of Pr, Re, F1, and AUC around 0.96 and 0.94 for
impactful changes at, respectively, coarse- and fine-grained
levels. But we also observed that the use of features selection
at the coarse-grained level leads to a performance reduction,
decreasing values of Pr, F1, and AUC. The Friedman test did
not point a significant difference when using feature selection
compared to all features, as well as between the two levels of
granularity, in the same set of features. In summary, we can
conclude that both sets of features are good predictors. They
reach values of Pr, Re, F1, and AUC ≥ 0.79 at both levels.

Finding 4: Both social and technical features are effective
as a proxy to detect impactful changes. In this way, code
review stakeholders may choose the set of features to be
used according to their interests and roles.

Social features vs. technical features vs. social + technical
features. The set of technical features are better predictors
than the set of social features in terms of Pr, Re, F1, and
AUC for coarse-grained and fine-grained smells, and both
algorithms, with or without feature selection. We observe a
significant statistical difference between both sets. Neverthe-
less, there is no statistical difference, in terms of performance,
between technical and social + technical sets. The combination
of both kinds of features leads to results that are statistically
equivalent to the best results, obtained by the technical feature
set. This happens even for the set of social and technical
features together when the double number of features is used.

Finding 5: The use of technical features leads to the
best results. Moreover, such kind of features can be used
in combination with social features without reducing the
performance of the ML algorithms.

D. The best features for predicting design impactful changes

We address RQ4, by reporting how often each feature
appears among the top-1 and top-5 most important features of
all the generated models without feature selection. To better
understand the importance of social and technical features for
predicting design impactful changes per symptom category,
we generate different sets of rankings. To this end, we vary
the configuration of each model according to the different
feature sets, i.e., social features only, technical features only,
and both together, and reported the five most frequent features
per ranking and feature sets. We used scikit-learn’s imple-
mentations to extract the feature importance of the SVM
(linear), Decision Tree, Random Forest, Gradient Boosting,
and Logistic Regression models [64]. We highlight that some
models, e.g., SVM, might return the importance of a feature
as a negative number, indicating that the feature is important
for the prediction of the design unimpactful changes, in our
case. Thus, we consider such a feature also important to the
models, and thus, we build the ranking using the absolute value
of feature importance returned by the models.

The best features using social and technical features
in isolation for predicting design impactful changes. Ta-
ble VIII lists the ranking of the best features across ML al-
gorithms and systems grouped by smell category, i.e., coarse-
grained (CG) and fine-grained (FG) smells, and feature set,
i.e., technical feature only, and social feature only. For each
ranking, we show the corresponding dimension (Dim.) and the
frequency (Freq.) in which each feature appears by feature set.

TABLE VIII
THE RANKING OF THE MOST IMPORTANT FEATURES ACROSS ML

ALGORITHMS USING SOCIAL AND TECHNICAL FEATURES IN ISOLATION
Coarse-grained Smells

Technical Features Only Social Features OnlyRanking Dim. Feature Name Freq. Dim. Feature Name Freq.
Size # Lines Added 13 Dev Exp # Directory Changes 23
Size # Files Added 11 Disc Act # Inline Comments 5
Size # Changed Lines 6 Dev Exp # Changes 3
Complexity # Segments Added 2 Colab Net. Social Closeness 2

1

Diffusion # Changed Files 2 Dev Exp # Recent Changes 1
Size # Lines Added 29 Dev Exp # Directory Changes 31
Size # Files Added 28 Dev Exp # Changes 25
Size # Changed Lines 23 Dev Exp Merged Ratio 22
Complexity # Segments Added 20 Dev Exp # Recent Changes 20

5

Diffusion Modify Entropy 13 Dev Exp Recent Merged Ratio 11
Fine-grained Smells

Technical Features Only Social Features OnlyRanking Dim. Feature Name Freq. Dim. Feature Name Freq.
Size # Lines Added 16 Dev Exp # Directory Changes 28
Size # Changed Lines 10 Disc Act # Inline Comments 4
Complexity # Segments Added 6 Disc Act # Words in General Comments 1
File History # File Modifications 2 Disc Act % Words in General Comments 1

1

Diffusion # Changed Files 1 Disc Act Discussion Length 1
Size # Lines Added 30 Dev Exp # Directory Changes 33
Size # Changed Lines 23 Dev Exp # Changes 22
File History # File Modifications 23 Dev Exp # Recent Changes 22
Textual Message Length 17 Dev Exp Merged Ratio 20

5

Complexity # Segments Added 16 Disc Act # Inline Comments 11

By considering FG smells with technical features only, we
observed that features quantifying the size of the code changes
such as, lines added (NLA), and changed lines (CHURN)
frequently appear in the top-1 ranking, followed by features
that quantify complexity (segments added (NSA)), history
information about files modified (file modifications (FM)),
and diffusion of a change (changed files (NCF)). A similar
observation applies in the top-5 ranking, but with the presence
of one textual feature, message length (ML), that appears 17
times. Interestingly, when we compare both types of smells,
we observed that NLA, CHURN, NSA, NCF also appear as
important for both symptom categories in the top-1 and top-5
rankings, except for the features files added (NFA), and modify
entropy (ME) that only appear for CG smells.

On the other hand, when we consider social features only:
for FG smells, we observed that the feature directory changes
(NDC), that quantifies the developer’s experience in terms of
the number of prior code changes submitted by the owner
that contains at least one directory affected by the current
submitted code change, is the most important social feature in
the top-1 ranking appearing 28 times across models. Next, less
frequently, features that quantify inline comments (NIC) made
by reviewers on the code change submitted by the owner, and
features that quantify discussion activities among the owner
and reviewers, such as, # words in general comments (NGC),
% words in general comments (PWGC), and discussion length
(DL) also appear as important features.

Interestingly, by looking at the top-5 ranking, we observed
that 4 out of 7 (57%) features that quantify different aspects
of the developer’s experience are considered as important
across models, followed by the NIC that appears 11 times. By
comparing both categories, we observed that NDC keeps its

importance in the top-1 and top-5 rankings. Finally, two social
features appear as important for CG smells, social closeness
(SCLOS), and recent merged ratio (RMR). These observations
also reinforce that senior developers should be allocated as
reviewers to keep the quality of code review high [3], [7] and
promote the knowledge transfer along revisions [2], [65].

Finding 6: In isolation, social features that quantify
the developer’s experience and discussion activities are
indeed considered important across models in both smells
categories. Also, as expected, technical features that
quantify size, complexity, and diffusion of the code
changes are considered important across all models.

The best features using social and technical features
together for predicting design impactful changes. Table IX
also lists the ranking of the best features across ML algorithms
grouped by CG and FG smells. However, in this table, we
consider social and technical features as a single feature set.
We also show the corresponding dimension (Dim.) and the
frequency (Freq.) in which each feature appears.

TABLE IX
THE RANKING OF THE MOST IMPORTANT FEATURES ACROSS ML

ALGORITHMS USING SOCIAL AND TECHNICAL FEATURES TOGETHER
Coarse-grained Smells

Ranking Dim. Technical features Freq. Dim. Social features Freq.
Size # Lines Added 12 - - -
Files Added # Files Added 12 - - -
Size # Changed Lines 7 - - -
Diffusion # Changed Files 1 - - -

1

Diffusion Modified Entropy 1 - - -
Size # Lines Added 29 Dev Exp # Changes 2
Size # Files Added 29 Dev Exp # Recent Change 2
Size # Changed Lines 21 Dev Exp Recent Merged Ratio 2
Complexity # Segments Added 19 Dev Exp # Directory Changes 1

5

Diffusion Modified Entropy 13 - - -
Fine-grained Smells

Ranking Dim. Technical features Freq. Dim. Social features Freq.
Size # Lines Added 12 - -
Size # Changed Lines 12 - -
Complexity # Segments Added 7 - -
File History # File Modifications 2 - -

1

Diffusion # Changed Files 1 - -
Size # Lines Added 30 Dev Exp # Changes 2
Size # Changed Lines 26 Dev Exp # Recent Change 2
Complexity # Segments Added 18 Dev Exp Recent Merged Ratio 2
Diffusion # Languages 17 Disc Act % Words in General Comments 1

5

File History # File Modifications 13 Dev Exp # Directory Changes 1

For FG smells with social and technical features aggregated,
we observe that the same technical features listed in Table
VIII appears in the top-1 and top-5 rankings, i.e., when we
consider the technical features in isolation, the same features
also appear as the most important features for FG smells,
except for the message length (ML), that only appears when the
technical features are in isolation, and the number of languages
(NLANG) feature, which only appears in the rankings with the
combined features. Both of those features appear 17 times each
in their respective top-5 rankings. We also observed that when
the social and technical features are considered together, social
features only appear in the top-5 ranking.

This result indicates that technical features, when combined
with social ones, tend to be the most important features
across models, especially in the top-1 ranking. However, social
features that appear in the top-5 ranking are majority features
that quantify the developer’s experience. This result, reinforces
our previous finding, on the importance of the developer’s ex-
perience to predicting fine-grained design impactful changes.

We also observed similar behavior for CG smells, in which
the same set of technical features when we considered the tech-
nical features in isolation, also appear as the most important

features across models. The exception to this is the feature
modified entropy (ME), which appears 1 time in the top-1
ranking in Table IX. Finally, similar to FG smells the social
features only appear in the top-5 ranking, with the prevalence
of features that quantify the developer’s experience.

Finding 7: Technical features tend to be considered
the most important features across models when com-
pared with social features. However, social features that
quantify the developer’s experience are also considered
important across models in both symptom categories.

Some features never appear in any of the rankings. Con-
sidering the full rankings of features importance, we observed
that for both FG and CG smells, when technical and social
features are considered in isolation, the technical features that
capture textual characteristics of the commit message such
as, has bug (BUG), has feature (FEAT), has improvement
(IMPR), has document (DOC), and has refactor (REFC) do
not appear even when we consider the top-5 ranking. A similar
observation applies when we consider all social and technical
features together, except for the feature FEAT. On the social
features, for both smell types the features directory merged
ratio (DMR) and social betweenness (SB) never appear in the
top-1 and top-5 feature importance ranking. Additionally, the
feature percentage words in general comments (PWGC) also
does not appear in the rankings for CG smells.

On the other hand, when we combine all social and technical
features together, eight social features do not appear among
the rankings for both symptoms category. These features, four
are from the collaboration network dimension, social closeness
(SCLOS), social clustering (SCLUST), social eigenvector, and
social betweenness (SB). Another group of three features that
do not appear are from the discussion activity dimension:
inline comment (NIC), general comments (NGC), and discus-
sion length (DL). Finally, reviews (NR) from the developer’s
experience dimension also does not appear. Specifically for FG
smells, we observed that merged ratio (MR), recent merged
ratio (RMR), directory merged ratio (DMR), social k coreness
(SKC), # words in inline comments (NWIC), # words in
general comments (NWGC), and % words in general comments
(PWGC) also never appear in the rankings.

Finding 8: Features from the textual dimension con-
sistently did not appear in any of the rankings when
technical features are used in isolation. Conversely, when
both types of features are used in conjunction, features
related to collaboration networks and discussion activity
tend to not appear for both symptom categories.

V. THREATS TO VALIDITY

Construct and Internal Validity. The precision and recall
of degradation symptoms detection may have influenced our
results. We mitigate this threat by selecting a detection tool,
successfully used in recent studies on design degradation [3],
[13], [33], [66], and previous work [67] indicated a precision
of 96% and a recall of 99%. Moreover, there is evidence

that developers tend to refactor code elements with a high
density and diversity of the selected symptoms [18]. Although,
there are more instances of design unimpactful changes in
our dataset we mitigate this imbalanced dataset by removing
instances from the over-represented class through random
under-sampling strategy. Moreover, the selection of the ML
algorithms and their parameter settings may affect the accuracy
and influence interpretability. We mitigate this threat by select-
ing the most widely used interpretable ML algorithms and,
for a fair comparison, we searched for their best parameters
through an extensive hyperparameter search via grid search,
and 10-fold cross-validation strategy. Finally, we selected and
computed a wide number of social and technical features that
helped us measure different social and technical dimensions
of the changes involved in each code revision, e.g., developer
experience, and file history. The rationales for using metrics
are supported by prior studies, e.g., [22], [47], [48], [68].
We wrote scripts to automate compute these metrics, and all
implementations were validated by three paper authors.

Conclusion and External Validity. About the descriptive
analysis, four paper authors contributed to the analysis of
design (un)impactful changes. For the statistical analysis, we
rely on the Wilcoxon Rank Sum Test, Bonferroni correction,
and Cliff’s Delta (d) measure to verify which metrics are able
to discriminate between (un)impactful design changes. We also
computed largely used performance measures [55], precision,
recall, F1-score, and AUC score. Furthermore, we rely on
the Friedman non-parametric test, and Nemenyi-tests to avoid
subjective opinion regarding the best accurate model and the
role of social and technical features as predictors. About the
feature importance, our ML pipeline does not currently have
a way to get the feature importance of Naive Bayes, but we
have no reason to believe the lack of this model affected the
conclusion of RQ4. We are aware that there is an inherent
threat to transferring our findings to other systems, i.e., our
results may be subject to the degradation characteristics of
these specific systems. However, we focused on seven systems
to be able to make robust and reliable statements about if
learning approaches can be used in such settings.

VI. RELATED WORK

Previous studies applied ML to help in the code review
activity [63]. In fact, ML has been used intensively for smell
characterization and detection [61], [62], [69], [70]. Recent
reviews on this subject show that distinct algorithms and
smells have been addressed. They differ in the set of metrics,
regarding product and process [71], [72]. There are also works
that investigate how smells affect program comprehension and
bug proneness, and how code becomes smelly. Sae-Lim et
al. [73], [74] proposes an ML approach that uses information
from the current release to predict modules that will decay in
the next release, i.e., modules that will become smelly. The
prediction model is built based on source code metrics, but it
can be improved by using developers’ context that is expressed
by a set of modules to be modified by the developers. We
have not found ML-based studies concerned with how changes

performed by developers in the code review context can impact
on the degradation symptoms like smells.

Works that study the impact of code review on the over-
all software quality do not usually apply ML. Some works
investigate the relationship between code review and bug
introduction [75], [76], and between code review and design
quality [6], [7]. Morales et al. [6] studied the impact of
code review coverage (proportion of changes code reviewed)
and reviewer involvement on smells. They observe that high
coverage and review participation can reduce the occurrence
of smells. Pascarella et al. [7] investigated the influence of
code reviews in the code smell severity. They conclude that
higher values of code review quality dimensions (activity and
participation) are related to a decrease in code smell severity.

In a previous work [3], we observed that the majority of
code reviews are unimpactful on the evolution of design degra-
dation and that certain code review practices can both combat
or even accelerate design degradation. Our findings showed
that design discussions may not be enough for avoiding degra-
dation and that certain practices, such as long discussions and a
high rate of reviewers’ disagreement, might increase the design
degradation risk. We also observed a wide design degradation
fluctuation during the revisions of each review, meaning that
developers were both introducing and removing degradation
symptoms along with a single code review. This fluctuation
often resulted in the amplification of design degradation at the
end of the review. This fact shows the importance of reviewers
to know a priori the impact of their revisions. Our study is
the first initiative to contribute in this direction. We propose
an ML approach that uses social and technical features. This
allows reviewers to distinguish design (un)impactful changes
and prioritize revisions to avoid design degradation.

VII. FINAL REMARKS

In summary, our main findings pointed out that: (i) both
social and technical features are able to distinguish between
design impactful changes and unimpactful ones; (ii) Random
Forest and Gradient Boosting are the most accurate algorithms;
and (iii) both social and technical features are effective as a
proxy to predict impactful changes. Our findings also provide
insights for new studies and be the basis for tool builders
creating a new generation of tools to aid developers in au-
tomatically predicting design impactful changes during code
reviews. We also show that: (i) existing detection tools should
be more interactive, in a stepwise manner, to anticipate, find,
and remove signs of degradation before finishing a review;
(ii) In addition to only technical features, the combination with
social features is promising for predicting design (un)impactful
changes; and (iii) qualitative studies should be performed to
explain other aspects governing the decision-making process
discriminating and predicting design impactful changes.

Acknowledgment. This work was partially funded by
CNPq (434969/2018-4, 312149/2016-6, 140919/2017-
1, 141285/2019-2, 131020/2019-6, 104254/2019-0),
CAPES/Procad (175956), CAPES/Proex, and FAPERJ
(200773/2019, 010002285/2019, PDR-10 202073/2020).

REFERENCES

[1] D. Feitelson, E. Frachtenberg, and K. Beck, “Development and deploy-
ment at facebook,” IEEE Internet Comput., vol. 17, no. 4, pp. 8–17,
2013.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in 35th ICSE, 2013, pp. 712–721.

[3] A. Uchôa, C. Barbosa, W. Oizumi, P. Blenilio, R. Lima, A. Garcia,
and C. Bezerra, “How does modern code review impact software design
degradation? an in-depth empirical study,” in 36th ICSME. IEEE, 2020,
pp. 511–522.

[4] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman, “The
impact of code review on architectural changes,” IEEE Trans. Softw. Eng.
(TSE), pp. 1–19, 2019.

[5] M. Paixão, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke,
and E. Arvonio, “Behind the intents: An in-depth empirical study on
software refactoring in modern code review,” in 17th MSR, 2020, pp.
125–136.

[6] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the Qt, VTK, and ITK projects,”
in 22nd SANER. IEEE, 2015, pp. 171–180.

[7] L. Pascarella, D. Spadini, F. Palomba, and A. Bacchelli, “On the effect
of code review on code smells,” in 27th SANER, 2020.

[8] M. C. O. Silva, M. T. Valente, and R. Terra, “Does technical debt lead to
the rejection of pull requests?” in 12th SBSI. ACM, 2016, pp. 248–254.

[9] E. Fernandes, A. Uchôa, A. C. Bibiano, and A. Garcia, “On the
alternatives for composing batch refactoring,” in 3rd IWoR. IEEE,
2019, pp. 9–12.

[10] R. de Mello, A. Uchôa, R. Oliveira, W. Oizumi, J. Souza, K. Mendes,
D. Oliveira, B. Fonseca, and A. Garcia, “Do research and practice
of code smell identification walk together? a social representations
analysis,” in 13th ESEM. IEEE, 2019, pp. 1–6.

[11] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in 11th
MSR, 2014, pp. 202–211.

[12] T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K.-i. Matsumoto, “The
impact of a low level of agreement among reviewers in a code review
process,” in 12th OSS, 2016, pp. 97–110.

[13] C. Barbosa, A. Uchôa, F. Falcao, D. Coutinho, H. Brito, G. Amaral,
A. Garcia, B. Fonseca, M. Ribeiro, V. Soares, and L. Sousa, “Revealing
the social aspects of design decay: A retrospective study of pull
requests,” in 34th SBES, 2020, pp. 364–373.

[14] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on
technical debt and its management,” J. Syst. Softw. (JSS), vol. 101, pp.
193–220, 2015.

[15] L. Sousa, A. Oliveira, W. Oizumi, S. Barbosa, A. Garcia, J. Lee,
M. Kalinowski, R. de Mello, B. Fonseca, R. Oliveira et al., “Identifying
design problems in the source code: A grounded theory,” in 40th ICSE,
2018, pp. 921–931.

[16] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[17] J. Martins, C. Bezerra, A. Uchôa, and A. Garcia, “Are code smell
co-occurrences harmful to internal quality attributes? a mixed-method
study,” in 34th SBES, 2020, pp. 52–61.

[18] W. Oizumi, L. Sousa, A. Oliveira, L. Carvalho, A. Garcia, T. Colanzi,
and R. Oliveira, “On the density and diversity of degradation symptoms
in refactored classes: A multi-case study,” in 30th ISSRE, 2019, pp.
346–357.

[19] A. Mockus and D. M. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, no. 2, pp. 169–180, 2000.

[20] O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The
influence of non-technical factors on code review,” in 20th WCRE.
IEEE, 2013, pp. 122–131.

[21] Y. Jiang, B. Adams, and D. M. German, “Will my patch make it? and
how fast? case study on the linux kernel,” in 10th MSR. IEEE, 2013,
pp. 101–110.

[22] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer, “Categoriz-
ing bugs with social networks: a case study on four open source software
communities,” in 35th ICSE. IEEE, 2013, pp. 1032–1041.

[23] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Trans. Softw. Eng. (TSE),
vol. 26, no. 7, pp. 653–661, 2000.

[24] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Naka-
mura, “An analysis of developer metrics for fault prediction,” in 6th
PROMISE, 2010, pp. 1–9.

[25] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” IEEE Trans. Softw. Eng. (TSE), vol. 39, no. 6, pp. 757–773,
2012.

[26] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of
bug prediction approaches,” in 7th MSR. IEEE, 2010, pp. 31–41.

[27] H. S. Yazdi, M. Mirbolouki, P. Pietsch, T. Kehrer, and U. Kelter,
“Analysis and prediction of design model evolution using time series,”
in 26th CAiSE. Springer, 2014, pp. 1–15.

[28] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-Popstojanova,
“Are change metrics good predictors for an evolving software product
line?” in 7th PROMISE, 2011, pp. 1–10.

[29] J. Alves Pereira, M. Acher, H. Martin, and J.-M. Jézéquel, “Sampling
effect on performance prediction of configurable systems: A case study,”
in 11th ICPE, 2020, pp. 277–288.

[30] J. A. Pereira, H. Martin, M. Acher, J.-M. Jézéquel, G. Botterweck, and
A. Ventresque, “Learning software configuration spaces: A systematic
literature review,” arXiv preprint arXiv:1906.03018, 2019.

[31] Eclipse, https://git.eclipse.org/r/#/c/3345/, 2020, accessed in: August
2020.

[32] ——, https://git.eclipse.org/r/#/c/825/, 2020, accessed in: August 2020.
[33] T. Sharma, P. Mishra, and R. Tiwari, “Designite: a software design

quality assessment tool,” in 1st BRIDGE. ACM, 2016, pp. 1–4.
[34] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas, “Machine learning:

a review of classification and combining techniques,” Artificial Intelli-
gence Review, vol. 26, no. 3, pp. 159–190, 2006.

[35] T. Menzies and M. Shepperd, ““bad smells” in software analytics
papers,” Inf. Softw. Technol. (IST), vol. 112, pp. 35–47, 2019.

[36] M. Paixao, J. Krinke, D. Han, and M. Harman, “Crop: Linking code
reviews to source code changes,” in 15th MSR, 2018, pp. 46–49.

[37] T. Sharma and D. Spinellis, “A survey on software smells,” J. Syst. Softw.
(JSS), vol. 138, pp. 158–173, 2018.

[38] R. C. Martin and M. Martin, Agile Principles, Patterns, and Practices
in C# (Robert C. Martin). Upper Saddle River, NJ, USA: Prentice Hall
PTR, 2006.

[39] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
they really smell bad? a study on developers’ perception of bad code
smells,” in 2014 ICSME. IEEE, 2014, pp. 101–110.

[40] W. Oizumi, A. Garcia, L. Sousa, B. Cafeo, and Y. Zhao, “Code
anomalies flock together: Exploring code anomaly agglomerations for
locating design problems,” in 38th ICSE, 2016.

[41] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter, “Inter-smell
relations in industrial and open source systems: A replication and
comparative analysis,” in 31st ICSME. IEEE, 2015, pp. 121–130.

[42] A. Uchôa, C. Barbosa, D. Coutinho, W. Oizumi, W. K. G. Assunção,
S. Regina Vergilio, J. Alves Pereira, A. Oliveira, and A. Garcia. (2021)
Replication package for the paper: “predicting design impactful changes
in modern code review: A large-scale empirical study”. Accessed:
2021-02-26. [Online]. Available: http://doi.org/10.5281/zenodo.4563214

[43] M. Paixao and P. H. Maia, “Rebasing in code review considered harmful:
A large-scale empirical investigation,” in 19th SCAM. IEEE, 2019, pp.
45–55.

[44] A. Hindle, D. M. German, and R. Holt, “What do large commits tell us?
a taxonomical study of large commits,” in 5th MSR, 2008, pp. 99–108.

[45] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: analytics and risk
prediction of software commits,” in 10th FSE, 2015, pp. 966–969.

[46] V. Soares, A. Oliveira, P. Farah, A. Bibiano, D. Coutinho, A. Garcia,
S. Vergilio, M. Schots, D. Oliveira, and A. Uchôa, “On the relation
between complexity, explicitness, effectiveness of refactorings and non-
functional concerns,” in 34th SBES, 2020, pp. 788–797.

[47] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in 5th
MSR, 2008, pp. 67–76.

[48] Y. Fan, X. Xia, D. Lo, and S. Li, “Early prediction of merged code
changes to prioritize reviewing tasks,” Emp. Softw. Eng. (ESE), vol. 23,
no. 6, pp. 3346–3393, 2018.

[49] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Review
participation in modern code review,” Emp. Softw. Eng. (ESE), vol. 22,
no. 2, pp. 768–817, 2017.

[50] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how
misclassification impacts bug prediction,” in 35th ICSE. IEEE, 2013,
pp. 392–401.

https://git.eclipse.org/r/#/c/3345/
https://git.eclipse.org/r/#/c/825/
http://doi.org/10.5281/zenodo.4563214

[51] Q. Song, Y. Guo, and M. Shepperd, “A comprehensive investigation of
the role of imbalanced learning for software defect prediction,” IEEE
Trans. Softw. Eng. (TSE), vol. 45, no. 12, pp. 1253–1269, 2018.

[52] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” 32nd ICML, 2015.

[53] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated machine learning:
methods, systems, challenges. Springer Nature, 2019.

[54] R. Kohavi et al., “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Ijcai, vol. 14, no. 2. Montreal,
Canada, 1995, pp. 1137–1145.

[55] T. Fawcett, “An introduction to roc analysis,” Pattern Recogn. Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[56] E. Whitley and J. Ball, “Statistics review 6: Nonparametric methods,”
Critical care, vol. 6, no. 6, p. 509, 2002.

[57] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers, 2005.

[58] J. H. McDonald, Handbook of biological statistics. sparky house
publishing Baltimore, MD, 2009, vol. 2.

[59] J. Romano, J. D. Kromrey, J. Coraggio, J. Skowronek, and L. Devine,
“Exploring methods for evaluating group differences on the nsse and
other surveys: Are the t-test and cohen’sd indices the most appropriate
choices,” in annual meeting of the Southern Association for Institutional
Research. Citeseer, 2006, pp. 1–51.

[60] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the american statistical
association, vol. 32, no. 200, pp. 675–701, 1937.

[61] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Com-
paring and experimenting machine learning techniques for code smell
detection,” Emp. Softw. Eng. (ESE), vol. 21, pp. 1143 – 1191, 2016.

[62] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. D. Lucia, “Mining version histories for detecting code smells,” IEEE
Trans. Softw. Eng. (TSE), vol. 41, no. 5, pp. 462–489, 2015.

[63] H. Lal and G. Pahwa, “Code review analysis of software system using
machine learning techniques,” in 11th ISCO, 2017, pp. 8–13.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[65] M. Caulo, B. Lin, G. Bavota, G. Scanniello, and M. Lanza, “Knowledge
transfer in modern code review,” in 28th ICPC, 2020, pp. 230–240.

[66] M. Alenezi and M. Zarour, “An empirical study of bad smells during
software evolution using designite tool,” i-Manager’s Journal on Soft-
ware Engineering, vol. 12, no. 4, p. 12, 2018.

[67] T. Sharma, P. Singh, and D. Spinellis, “An empirical investigation on
the relationship between design and architecture smells,” Emp. Softw.
Eng. (ESE), 2020.

[68] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in 36th ICSE, 2014, pp.
345–355.

[69] F. Arcelli Fontana and M. Zanoni, “Code smell severity classification
using machine learning techniques,” Knowledge-Based Systems, vol.
128, pp. 43 – 58, 2017.

[70] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De
Lucia, “Detecting code smells using machine learning techniques: Are
we there yet?” in 25th SANER. IEEE, 2018, pp. 612–621.

[71] F. Luiz Caram, B. R. de Oliveira Rodrigues, A. Campanelli, and
F. Silva Parreiras, “Machine learning techniques for code smells de-
tection: A systematic mapping study,” Int. J. Softw. Eng. Knowl. Eng,
vol. 29, pp. 285–316, 02 2019.

[72] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Inf. Softw. Technol., vol. 108, pp. 115 – 138, 2019.

[73] N. Sae-Lim, S. Hayashi, and M. Saeki, “Toward proactive refactoring:
An exploratory study on decaying modules,” in 3rd IWoR. IEEE, 2019,
pp. 39–46.

[74] ——, “Can automated impact analysis techniques help predict decaying
modules?” in 35th ICSME, 2019, pp. 541–545.

[75] S. Mcintosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Emp. Softw. Eng. (ESE), vol. 21, no. 5, pp. 2146–2189, Oct.
2016.

[76] G. Bavota and B. Russo, “Four eyes are better than two: On the impact
of code reviews on software quality,” in 31st ICSME. IEEE, Sep. 2015,
pp. 81–90.

	Introduction
	Motivating Example
	Study Settings
	Research Questions
	Code Review Data
	Detection of Degradation Symptoms within Code Reviews
	Identification of Design Impactful Change Instances
	Features for Design Impactful Change Prediction
	Development of the Impactfulness Prediction Models

	Results and Discussions
	Design impactful changes vs. unimpactful ones
	ML performance for predicting design impactful changes
	The role of social and technical features as predictors
	The best features for predicting design impactful changes

	Threats to Validity
	Related Work
	Final Remarks
	References

