REM4DSPL: A Requirements Engineering Method for Dynamic
Software Product Lines

Amanda Sousa
UFC, Ceara, Brazil
amandas@alu.ufc.br

Carla I. M. Bezerra
UFC- Quixad4, Ceara, Brazil
carlailane@ufc.br

ABSTRACT

Context: Dynamic Software Product Line (DSPL) is a set of soft-
ware products capable of self-adapt and configure in run-time. DSPL
products have common features (commonalities) and varying fea-
tures (managed in run-time according to context changes). Objec-
tive: DSPL requirements engineering is challenging. Requirements
engineers have to carefully plan self-adaptation while eliciting,
modeling, and managing variability requirements. This paper intro-
duces a method for DSPL requirements engineering. Method: We
relied on empirically-derived activities of DSPL requirements engi-
neering to build our method. We selected techniques and templates
used in other domains such as SPL for refinement and incorporation
into the method. We asked DSPL experts via a survey on the method
applicability. Result: We introduced the Requirements Engineering
Method for DSPL (REM4DSPL). Elicitation is guided by supervised
discussions. Modeling relies on feature models. Variability Manage-
ment is tool-assisted and validated via feature model inspection.
DSPL experts agreed on the method applicability and suggested im-
provements. Conclusion: REM4DSPL relies on empirically-derived
activities, techniques that have been successfully used by previous
work, and templates adapted to the DSPL context. We expect our
method to guide requirements engineers in practice.

CCS CONCEPTS

« Computer systems organization — Reconfigurable com-
puting; « Software and its engineering — Software product
lines; Requirements analysis.

KEYWORDS

Dynamic Software Product Lines, Requirements Engineering

ACM Reference Format:

Amanda Sousa, Anderson Uchda, Eduardo Fernandes, Carla I. M. Bezerra,
José Maria Monteiro, and Rossana M. C. Andrade. 2019. REM4DSPL: A
Requirements Engineering Method for Dynamic Software Product Lines.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7282-4/19/10...$15.00
https://doi.org/10.1145/3364641.3364656

Anderson Uchoda
PUC-Rio, Rio de Janeiro, Brazil
auchoa@inf.puc-rio.br

José Maria Monteiro
UFC, Cear4, Brazil
monteiro@dc.ufc.br

Eduardo Fernandes
PUC-Rio, Rio de Janeiro, Brazil
emfernandes@inf.puc-rio.br

Rossana M. C. Andrade
UFC, Ceara, Brazil
rossana@ufc.br

In XVIII Brazilian Symposium on Software Quality (SBQS’19), October 28-
November 1, 2019, Fortaleza, Brazil. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3364641.3364656

1 INTRODUCTION

Software Product Line (SPL) is a family of software products that
target a common market segment or mission [12]. SPL products
share a common set of features, i.e., commonalities, and a set of vary-
ing features, i.e., variabilities [2] [18]. The SPL design ultimately
targets a massive software reuse [31]. There is an underlying set
of software requirements that characterize an SPL domain [12].
Requirements engineers have to carefully elicit, model, and man-
age SPL requirements because they summarize the needs of many
types of users at once [19]. Thus, the SPL requirements engineering
is far from being trivial. Various techniques have been proposed
to support the key SPL requirements engineering tasks [17] [45].
Additionally, systematic methods have been proposed to support
SPL requirements engineering so far [8] [28].

Context-sensitive computing systems have recently emerged
as systems able to self-adapt according to context changes in run-
time [40]. Context regards the environment in which the system
runs [30] [40]. Aimed at the massive reuse of these systems, we have
the Dynamic Software Product Line (DSPL) [21]. DSPL extends the
SPL design with context-sensitiveness so that DSPL products self-
adapt and configure in run-time [5]. New requirements engineering
challenges emerged since then [2] [7] [12] [35]. On the one hand,
traditional SPL requirements vary among products whenever vari-
abilities are concerned, but these variabilities are managed at the
domain engineering by specialists [8] [20]. Any requested changes
are incrementally discussed and implanted after discussions and
implementation. On the other hand, DSPL requirements have to
be carefully conceived with context variations in mind [5]. Once
context variations occur in run-time, specialists have to predict and
carefully design as many variations as possible [19].

We advocate that DSPL requirements engineering may only
be possible through massive discussions, supervised brainstorm-
ing, and systematic documentation. Unfortunately, the literature
that aimed to support these activities has fallen short in many
ways. Ultimately, previous studies do not systematically support
the particularities of requirements engineering at the three most
important activities: eliciting requirements, modeling requirements,
and managing variabilities. Aimed to fill this literature gap, this
paper introduces REM4DSPL: a Requirements Engineering Method
for managing variabilities in DSPL. We relied on existing tech-
niques employed for context-sensitive systems and SPL in general.


https://doi.org/10.1145/3364641.3364656
https://doi.org/10.1145/3364641.3364656

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

Whenever possible, we tried to incorporate the use of well-known
requirements-related techniques (use case documentation, etc.), so
that DSPL engineers feel familiar with the method to some extent.

The current knowledge about the activities required to elicit,
model, and manage variability requirements in DSPL is quite scat-
tered in the literature [13]. Such scattering helps little in guiding
domain engineers to perform certain activities that are a key to
reason about variability requirements in DSPL. Aimed at address-
ing this gap, we previously performed a literature review [13] that
summarized those key activities for performing requirements en-
gineering in DSPL. In this work, we rely on the outcomes of this
literature review, not just in terms of activities, but also in terms of
supporting tools and techniques for each activity. This paper moves
forward by systematically guiding domain engineers through the
Requirements Engineering Method for DSPL (REM4DSPL). Our
method is constituted of three major phases. 1) Requirements Elic-
itation: via supervised discussions, both domain engineers and
stakeholders discuss the DSPL requirements and their possible
variations in run-time. The discussion outcomes are documented
with the support of the Context Aware Software Product Line Use
Case (CAPLUC) template [16]. 2) Requirements Modeling: with
the literature support, engineers specify requirements and features.
3) Variability Management: engineers manage variability require-
ments with tool support [36] [37] and an adapted version of the
FMCheck inspection technique for feature models [14].

We performed a preliminary evaluation of REM4DSPL with two
DSPL experts aimed at qualitatively capturing their perception
of the method’s applicability in real settings. Our preliminary re-
sults point out a promising way to support DSPL engineers plus
some refinements to be applied and re-evaluated in future work.
In summary, we expect REM4DSPL can help DSPL requirements
engineering by combining empirically-derived activities and well-
known support techniques extracted from other software domains.
Section 2 provides background information, aimed at support-
ing the proper understanding of our work, and discusses related
work. Section 3 describes the process we employed for building the
REM4DSPL. Section 4 introduces our method. Section 5 presents a
preliminary evaluation of the proposed method. Section 6 discusses
some threats to the study validity [43]. Finally, Section 7 concludes
the paper and suggests future work.

2 BACKGROUND AND RELATED WORK

Section 2.1 discusses the major challenges of requirements engi-
neering for Dynamic Software Product Line (DSPL). Section 2.2
discusses previous studies aimed at supporting DSPL requirements
engineering to some extent.

2.1 DSPL Requirements Engineering

There is an increasing demand for software systems capable to
adapt their features according to user needs and resources con-
straints [32]. Many application domains demand capabilities for
flexible adaptation and post-deployment reconfiguration. Dynamic
Software Product Line (DSPL) [21] addresses this demand by ex-
tending the traditional Software Product Line (SPL) with product
self-adaptation and configuration in run-time [5]. The products of
a DSPL are context-sensitive computing systems; thus, they can

Sousa et al.

self-adapt according to context changes. Similarly to SPL, DSPL
products share a common set of features that satisfies the specific
needs of a particular market segment or mission [12].

Requirements engineering is the process of defining the soft-
ware requirements that meet the needs of system users and stake-
holders [25]. As for any other software system, requirements engi-
neering is fundamental for DSPL development [5] [9] [21]. In the
particular case of DSPL, requirements engineering occurs at the
domain engineering through two activities: Domain Analysis and
Context Analysis. Domain Analysis aims to define and specify the
needs and details of the domain that a DSPL must support. Context
Analysis aims to capture the contexts that a DSPL must support,
thereby identifying the context information required to self-adapt
and re-configure products in run-time [9].

New requirements engineering challenges for DSPL engineering
have emerged when compared to SPL [2] [7] [12] [35]. On the one
hand, traditional SPL requirements vary among products whenever
variabilities are concerned, but these variabilities are managed at the
domain engineering by specialists [8] [20]. Any requested changes
are incrementally discussed and implanted after discussions and
implementation. On the other hand, DSPL requirements have to
be carefully conceived with context variations in mind [5]. Once
context variations occur in run-time, specialists have to predict and
carefully design as many variations as possible [19]. Unfortunately,
the current support to DSPL requirements engineering is quite
scattered in the literature [13]. Especially, there is a lack of system-
atically methods for performing three activities that are key to the
DSPL requirements engineering: eliciting requirements, modeling
requirements, and managing variabilities. We aim to address this
literature gap through our current work.

2.2 Current Support and Limitations

We have found a few studies aimed at supporting the SPL require-
ments engineering [1] [28]. The first study [1] proposed a scenario-
based method to elicit requirements for ubiquitous computing sys-
tems. Ubiquitous systems are typically integrated within the envi-
ronment and people’s daily routine; thus, these systems constantly
capture context information to operate properly [1] [22] [24]. The
authors decided to shorten the scope and focus on eliciting func-
tional requirements only, i.e., the system’s perceivable functionali-
ties [10] [29]. The proposed method has three major activities. 1)
Scenario Description aimed at describing the possible scenarios in
a plain text. 2) Scenario Analysis aimed at analyzing each scenario
according to settings (context of the environment), agents or actors,
and sequences of actions, events, and goals. 3) Scenario Model-
ing with the support of the Business Process Model and Notation
(BPMN) [42]. Besides the limited scope (functional requirements
only), this work provides insufficient support to DSPL requirements
engineering due to the lack of guidance to identify and model con-
text feature and dynamic processes.

The second study [28] proposed a whole method for SPL require-
ments engineering called RiPLE-RE. Differently, from the previous
study, the authors proposed a more comprehensive step-by-step
constituted of three major activities. 1) Model Scope aimed at mod-
eling the SPL scope in terms of requirements, features, and consis-
tency. 2) Define Requirements aimed at eliciting, describing and



REM4DSPL: A Requirements Engineering Method for
Dynamic Software Product Lines

verifying the consistency of requirements. 3) Define Use Cases
aimed at eliciting, describing and verifying the consistency of use
cases. Unfortunately, this method is quite limited when it comes to
reasoning about self-adaptation, especially in DSPL.

We recently have performed a literature review [13] aimed to
summarize the current support to DSPL requirements engineering.
We then characterized some activities that are key to guide domain
engineers along with DSPL requirements elicitation, modeling, and
variability management. Unfortunately, we observed the lack of
systematic methods that are sufficiently comprehensive to support
those activities in practical settings. Thus, we used the aforemen-
tioned studies [1] [28] as a basis for characterizing and addressing
limitations towards the creation of REM4DSPL.

3 STUDY SETTINGS

This section describes our study design aimed at building and eval-
uating the REM4DSPL method. Section 3.1 illustrates the steps we
followed for building the method. Sections 3.2 and 3.3 summarize
the techniques and templates incorporated into the method for
supporting specific DSPL requirements engineering activities.

3.1 Steps to Build the Method

Figure 1 presents the five steps designed to build and evaluate the
Requirements Engineering Method for DSPL (REM4DSPL). The
continuous arrows indicate the relationships between activities.
Dashed arrows indicate the relationships between an artifact and

activity. We explain below each step.
= —
==l o)
review H
!
H H : i

(1) Define (2) Identify (3) Define (4) Build the (5) Evaluate
phasesand — support |[— templatesfor — method [ method
activities techniques the activities applicability

H
i
— N i
5 techniques, II ____________ Elicit ; Manage
2 template Model

Artifacts

—_— — Activity-activity Artifact-activity
[Tomt W [(vethod | | fevivactn - aroctoctus___,,

3 phases, lots II
of activitie

Figure 1: Steps performed to build and evaluate REM4DSPL

Step 1: Define phases and activities. In our previous work [13],
we have conducted a systematic literature review in order to inves-
tigate how requirements engineering and variability management
has been performed in DSPL domain engineering. We have found
a total of 37 research papers published from 2008 to 2015. We have
extracted from each paper: the activities either recommended or
performed by the researchers, besides the artifacts and tools used to
support each activity. As a result, we empirically derived a catalog
of DSPL requirements engineering activities that served as a basic
to the definition of activities and phases covered by REM4DSPL.
We have grouped these activities in three phases: Requirements
Elicitation, Requirement Modeling, and Variability Management. We
describe each phase and activity in Step 4.

Step 2: Identify support techniques. Although we already
performed a systematic literature review [13], we did not find at
that time requirements engineering techniques specifically shaped

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

for DSPL. Once we were aware of the proposal of new techniques
after the literature review’s publication date, we performed an ad
hoc selection of papers to find techniques for incorporation into
REM4DSPL. Our goal was identifying requirements engineering
techniques either proposed or used by previous studies in three
different but related domains: context-sensitive systems (CSS), SPL,
and DSPL. We have found the 13 papers listed in Table 1. We listed
techniques aimed at supporting requirements elicitation (third col-
umn) and modeling (fourth column). The table data helped us to
decide which techniques to incorporate into REM4DSPL.

Table 1: Requirements engineering techniques by paper

Support Technique

Paper  Domain o Elicitation R

[1] Scenario-based BPMN

3] 5W1H, Group Storytelling BPMN, BVCCoN

[22] metamodel-based n/a

[24] css n/a Context Model

[30] Scenario-based Context Model Based on Ontology

[39] 5W1H n/a

[40] Goal Model Goal Model

[14] n/a Feature Model, FMCheck

[17] SPL Existing Assets Use Cases

[28] Interview, Brainstorming Feature Model

[13] n/a Feature Model, Fama, MOSKitt4SPL, At-
las Model, BPMN, Familiar, FeatureIDE,
eMoflon, Odyssey, DOPLER, VariaMos

[36] DSPL ReMINDER Context Feature Model, Quality Feature
Model, DyMMer-NFP

[37] DyMMer-NFP Context Feature Model, Quality Feature

Model, NFR Catalog

n/a: ot applicable

We have found two studies [1] [30] that use scenario-based
techniques for eliciting requirements and context information for
context-sensitive systems. Once these studies relied on empirical
validation, we decided to incorporate the scenario-based technique
into our method. We also found that many studies (e.g, [36] [37])
rely on feature models for modeling requirements. Thus, we also
incorporated this technique into our method. We have found only
a few DSPL-specific techniques that we could immediately incorpo-
rate into the method, such as: the ReMINDER approach [36] aimed
to support the modeling of non-functional requirements (NFR); and
the DyMMer-NFP tool [37] aimed at providing a tooling support to
modeling NFR and context adaptation scenarios in DSPL feature
models. Section 3.2 details some key techniques.

Step 3: Define templates for the activities. Methods for sup-
porting requirements engineering of different domains typically
rely on templates that guide requirements documentation [25].
Aimed at defining templates that meet the needs of DSPL require-
ments engineering, we have looked for previous studies in three
domains: context-sensitive computing systems, ubiquitous systems,
and DSPL itself. We have selected the Context Aware Software
Product Line Use Case (CAPLUC) template [16] in order to system-
atically describe the scenarios elicited by requirements engineers.
CAPLUC is designed for context-sensitive systems, which makes
it easy to describe contexts in which a DSPL operates. We also
selected the Traceability Matrix template [11] to support the trace-
ability of software requirements and features for different contexts.
The Traceability Matrix assists the domain engineer in maintaining
traceability of both software requirements and the context features.
We present details about some key templates in Section 3.3.

Step 4: Build the method. Aimed to build our method, we first
discussed its high-level phases. Based on our previous literature
review [13] and our experience with DSPL engineering, we agreed



SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

that the three phases retrieved from the literature review [13]
(Requirements Elicitation, Requirement Modeling, and Variability
Management) would suffice to guide the DSPL requirements en-
gineering. For each phase, we reasoned about the work products
derived from the activities by phase. Finally, we established both
activity sequences and inter-dependencies. We relied on BPMN for
illustrating the overall REM4DSPL sequence of activities (details
in Section 4). REM4DSPL was shaped for constructing a DSPL in a
proactive fashion: domain engineers address the DSPL stakeholders’
needs from scratch. We explain below each phase.

o Phase 1: Requirements Elicitation. This phase consists
of systematically identifying the initial DSPL requirements
via supervised discussions (with the participation of a media-
tor) and the documentation of possible adaptation scenarios
based on context changes. A scenarios document based in
the CAPLUC template is the phase’s output. This document
enables the definition of functionalities, variabilities, and the
context adaptation of the product line.

e Phase 2: Requirements Modeling. This phase consists of
modeling the DSPL requirements elicited in Phase 1 based
on the DSPL particularities, such as the context classifica-
tion and the adaptation scenarios. Requirements modeling
includes: the requirement classification priority (essential,
important or desirable); the feature classification by category,
variability, and optionality; and the adaptation modeling by
the user, computational, and physical environment contexts.
A requirement specification document is the phase’s output.

e Phase 3: Variability Management. This phase consists of
tracking requirements and features specified in Phase 2. After
that, the features that represent the DSPL domain are sys-
tematically represented in the form of a feature model [23].
Feature models provide a general view of mandatory, op-
tional, and alternative features that may compose a DSPL
product. Finally, the feature model is verified by means of
defects affecting the features and their relationships.

Step 5: Evaluate method applicability. As a preliminary eval-
uation of REM4DSPL, we have performed a preliminary observa-
tional study with DSPL experts. We aimed to obtain the first evi-
dence on the method’s applicability from an expert viewpoint. We
introduce the evaluation design and results in Section 5.

3.2 Supporting Techniques

Technique 1: Capturing variability in business process mod-
els with Provop. Business Process Modeling (BPM) is the activity
of representing the underlying operational process of an organiza-
tion [4]. This activity has been largely employed for the organiza-
tion of different natures, including software development organiza-
tions. BPM provides a general view of organization actors, activities,
and their relationships [4]. In software development, BPM is typi-
cally employed to represent the candidate system users and how
they interact with a software system [4]. Thus, BPM can be used to
represent use cases. REM4DSPL adopts the Provop approach [20]
for modeling use cases. Provop is particularly interesting for the
DSPL domain because it allows capturing and managing variabil-
ities in a single business process model. Figure 2 illustrates the
Provop notation, which represents the general activity flow (with

Sousa et al.

activities, connectors, and adjust points) and discriminates alterna-
tive flows. With Provop, varying processes can be derived from an
existing process through trivial operations, such as addition and
deletion (see the bottom corner of the figure).

Endof

adjustment
point @

Start of
adjustment
point P

Activity —> °

Activity Activity

} activity 4
Activity

Start of End of Attribute = value

adjustment adjustment @ AND connector

point X point Y. @Mnd-w

<Joeite ) vaseine
point
Context Rule
- Start of adjustment point |End of adjustment point N
£ S INSERT  Start End | Start P
S DELETE X % 4
2 8 Activity End
2 ¢ ¢ EmO o
CONTEXT RULE CONTEXT RULE

Figure 2: Example that illustrates the Provop notation

Technique 2: Classifying features with Odyssey-FEX. Be-
fore performing the feature modeling tasks, we recommend the fea-
ture classification with the support of Odyssey-FEX [15]. Odyssey-
FEX is a meta-model that represents features in three dimensions.
1) Category regards the type of feature to be modeled. Features
have originally four categories: entity, domain, technological, and
implementation feature [26]. Aimed at providing DSPL-oriented
support, we added the context feature category. Once we are con-
cerned about modeling rather than implementation, we did not
consider implementation features in our work. 2) Variability re-
gards the variability degree of a feature (invariant or variant). 3)
Optionality regards the optionality degree of a feature (mandatory
or optional). Table 2 summarize the feature classification standard
that we adopted through Odyssey-FEX by dimension.

Table 2: Categories of feature classification

Classification by Category

Entity Feature: Entity Features represent the actors of the model. They are real-world entities
that act on the domain. Entity features relate to features of operating environment features
and domain features

Domain Features: These features are intrinsically linked to the essence of the domain. They are
responsible for representing functionalities and concepts of the model and can be mapped to
use cases

Conceptual Features: They are features that represent a concept of the domain

Functional Features: They are features that represent the functionalities of the domain
Technological Features: It is an abstract category that groups features that complement the
conceptual layer. These features should not be related to conceptual features

Operating Environment Features: They are features that represent an environment that a do-
main application can operate or use

Context Features: Features used to detect and manage context conditions, therefore represent
characteristics that change the behavior of the model according to the input of a given context
Classification by Variability

Invariant: Fixed or static elements, which are not configurable to the domain

Variant: It is an element fatally linked to a variation point and acts as an alternative to setting
to that variation point

Variation Point: It is a feature that reflects the definition of the necessary parameters in the
domain in an abstract way. It is configurable through variants

Classification by Optionality

Mandatory: Feature that is present in all derivations of domain configuration changes
Optional: Feature that is not present in all derivations of domain configuration changes




REM4DSPL: A Requirements Engineering Method for
Dynamic Software Product Lines

Technique 3: Classifying contexts. Context modeling is im-
portant for summarizing and estimating all contexts that a DSPL
should address. A key to the success of context modeling is clas-
sifying context by means of the context information that helps in
describing the context. This work reuses the context categories
defined by a previous work [22]. Use Contexts typically includes
user preferences, agenda, and profile. Computing Contexts regard
information of the computing environment in which the system
will operate, which includes battery autonomy, and available stor-
age, for instance. Physical Environment Contexts are usually related
to the current time, weather, location, and so forth.

Technique 4: Feature modeling with DyMMer-NFP. We se-
lected the DyMMer-NFP tool [37] to support the DSPL feature mod-
eling with NFR. The tool allows to create, visualize, and analyze an
SPL and DSPL feature model. Many customization operations are
allowed, such as: adding and deleting features; adding and deleting
constraints between functional requirements (FR) and NFR; and
modeling multiples context adaptation scenarios. We have used
this tool for building the DSPL feature model, specify the context
features and the context adaptation scenarios.

Technique 5: Inspecting feature models with FMCheck. To
define a feature model that captures all components of a DSPL is
fundamental. However, without the proper validation, feature mod-
els may incorrectly represent the DSPL domain and, consequently,
lead to a poor DSPL product configuration. Aimed at validating
DSPL feature models, we have employed FMCheck [14]. FMCheck
is a checklist for assuring the model consistency (i.e., at least one
DSPL product configuration is valid) and correctness (i.e., there are
no dead features) [6]. FMCheck has three parts. Individual Verifi-
cation of Features checks if feature descriptions are clear, correct,
and objective; it also validates if the feature actually belongs to
the modeled domain. Verification of Relationships between Features
checks if the feature inter-relations are well represented according
to the modeled domain. Verification of Composition Rules checks if
the feature composition rules are clear, correct, complete, consis-
tent, and relevant to the domain. FMCheck has been shown more
effective than ad hoc inspections [34].

3.3 Supporting Templates

Template 1: Documenting scenarios with the CAPLUC tem-
plate. The scenario document is the output artifact of the require-
ments elicitation phase. It contains scenarios described in tabular
form and based on the CAPLUC template [16]. The construction
of this document occurs through the detection of correspondences
between elements of scenarios narrated by the stakeholders with
the elements provided by the CAPLUC template. We have adopted
this template because it has a format oriented to context-sensitive
systems, which is quite appropriate for DSPL. Figure 3 illustrates a
use case modeled from the CAPLUC template. This use case is from
the Mobiline SPL [27] aimed to develop guides for context-sensitive
mobile tours. The use case comprises a variation point (Capture)
with three variants (Sensor, Memory, and External Service). The
steps concerning this variation point have the same index because
they are alternative to each other; “*” indicates a context constraint
(Internet Connection). The illustrated use case says that Sensor,

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

Memory and External Service can capture context, but choosing
the latter requires internet connection.

Element Description

Name Context Capture

Reuse Category Mandatory

Context Constrain

Summary Capture context information

Actors Context Manager

Precondition User must be logged

Postcondition Context information was acquired

Step User System
System require to Context
1 - Manager some context

information
[Capture] 2 - Sensor returns the context
Alt [Sensor] information
[Capture] 2 The Memory returns the context
Alt [Memory] information
[Capture] 2% External Service returns the
Alt [External Service] context information

Alternative Flows

(Constrain) (Steps)

Summary of Alternative Variations

[Sensor]
(Context Constrain: null) Step 2

[Capture]: "What is the [Memory]

. B Step 2
mechanism to get context (Context Constrain: null) P
; "
information?’ |External Service|
(Context Constrain: Internet Step 2

Connection)

Summary of Optional Variations

Figure 3: Example of use case written with CAPLUC [16]

Template 2: Modeling contexts with a Provop-adapted tem-
plate. Context modeling is fundamental to define the DSPL adap-
tation scenarios. This template guides the DSPL feature modeling
and the use case processes, which represent the DSPL adaptation
alternatives. Table 3 exemplifies the context model template used
by this work, which is quite similar to the one employed by Provop.
We applied three refinements here: replace variable name with con-
text name; value intervals are represented by context qualification;
and add the context quantification attribute. Context qualification
determines variation intervals of the context (e.g., high, medium,
or low battery). Context quantification determines thresholds [38]
by interval (e.g., low < 15%). As stated in Section 3.2, we adopted a
previous work’s context classification [22].

Table 3: Context model sample

Context Context Type  Qualification  Quantification
High > 75%
Battery Computational ~ Medium > 15% AND > 75%
Low < 15%
. . Available True
Bluetooth connection ~ Computational Unavailable False

4 REM4DSPL AT A GLANCE

Figure 7 introduces the Requirements Engineering Method for DSPL
(REM4DSPL). We describe each method phase as follows. Section 4.1
discusses the first phase aimed to elicit DSPL requirements. Sec-
tion 4.2 discusses the second phase in which domain engineers
perform the requirements modeling. Finally, Section 4.3 discusses
the third and last phase aimed to manage variability.



SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

I Scenarios document ! Specificationdocument

Type of

Requirements
Modeling

Variabiliy
Management

Reguirements
Elicitation

Representationerror

Software Product Lines (REMA4DSPL)

Specification
error

Requirenents Engineering Method for Dynamic

Figure 4: The REM4DSPL Overview

4.1 Phase 1: Requirements Elicitation

Figure 5 overviews the requirements elicitation phase, including the
roles, activities, and their relationships. This phase has three roles
involved: domain engineer, stakeholders, and redactor. Phase 1 aims
to elicit both functional and non-functional system requirements,
but also to identify contexts, features, and context features (i.e.,
dynamic properties that are specific for DSPL).

Scenario

: document
Develop the

O—)[Stan sasslun]—) —)[Mnderate session scenarios .
X document

Narrate situations
of user-system
interactions

Domain engineer

Requirements Elicitation
Stakeholders

Wirite all narrated
situations

stakeholder narrations

Redactor

Figure 5: Phase 1 - Requirements Elicitation

As discussed in Section 3.1, we rely on the scenario-based tech-
nique because it contributes to the understanding of the domain,
analysis of the stakeholders, and requirements elicitation [45]. Dis-
cussing scenarios also enables the identification of features, since a
feature can be represented as an abstraction of a requirement. By
discovering the features present in the scenarios, possible points
of variation and their variants are also discovered. Let us take a
feature called connection as a example; this feature can be variation
point whose variants are wi-fi and Bluetooth connection. Contexts
can be identified or mapped through either context constraints or
preconditions. In fact, a context is defined by capture knowledge;
this knowledge can either restrict or trigger system behaviors along
with the system use [44]. Complementary to scenarios, we recom-
mend group narrative techniques [3] to detect as many scenarios
as contexts as possible. These techniques include workshop and
storytelling. Phase 1 has five activities described below.

e Start session occurs when the domain engineer starts the
identification of as many DSPL requirements as possible.
Once the domain engineer is typically a specialist in the
DSPL domain, he must be aware and prepared to discuss

Sousa et al.

different use contexts of the future DSPL products. Thus, the
use of scenarios can be properly discussed and documented
with broad stakeholder participation.

e Moderate session is a fundamental task to the success of
the requirements elicitation phase. The domain engineer is
responsible for moderating the discussion sessions aimed
at ensuring that each participant cooperates with others
proportionally. We recommend the allocation of a moderator
capable to articulate ideas and keep people engaged.

e Narrate situations of user-system interactions occurs

when the stakeholders narrate candidate interaction between

the DSPL products and their respective users. This activity is
important to capture relevant information on the products’
expected behaviors, and to elicit major DSPL functionalities.

Write all narrated situations occurs when the redactors

take note of all narrated situations in a document.

Develop the scenarios document consists of analyzing

all notes made by the redactor in order to summarize them

in a well-formatted scenario document.

4.2 Phase 2: Requirements Modeling

Figure 6 overviews the requirements modeling phase. Phase 2 aims
to specify the requirements elicited in Phase 1. In this phase, the
requirements and features are organized to (1) assure a better un-
derstanding of the domain and (2) support the feature modeling.
Similar to the traditional software development, functional and
non-functional requirements will be documented. Additionally, this
phase includes the documentation of contexts and their proprieties,
as well as the modeling of business processes of the uses cases.

Scenarios
© document Identify and model business processes
Specify
requirements

Static use cases
business procss

! Speafied features .-
Specify Map requirements
features for features

(Non-functional) requirements .
Context
adaptations
inthe se-
case process Wodel adaptatiors

----- of business
. processes
Business
process .
adaptations

Figure 6: Phase 2 - Requirements Modeling

Requirements Modeling
25
Iﬁ(

Spexification|
N Document

Join the artifacts in
the specification
document.

Phase 2 strongly depends on the scenario document produced in
Phase 1. By analyzing the scenario document, it becomes possible to
identify and model the business processes and to specify DSPL fea-
tures. After the features are specified, they must be associated with
one or more requirements. Next, contexts must be identified and
specified in a context model. From this context model, the context
features are specified to enable the identification of variation points
that guide the DSPL self-adaptation. Finally, adjustments in the
business process of use cases must be modeled. The output of this
phase is the document of requirement specification and features.
We describe below each of the eight activities of Phase 2.



REM4DSPL: A Requirements Engineering Method for
Dynamic Software Product Lines

Specify requirements consists of specifying the DSPL re-
quirements and features. Requirements are documented,
mapped to uses cases, and their priority is defined. The re-
quirements specification is performed similarly to traditional
software development. Thus, each requirement is defined
with an identifier and associated with one or more use cases.
NFRs are also specified, and their priorities are specified ac-
cordingly. Priority can be categorized, in decreasing order,
as: essential, important, and desirable.

Identify and model business process aims to identify use
case elements, including triggers that create business logic
automatically. After that, the identified elements are mod-
eled into use case processes. These processes guide domain
engineers in understanding the system dynamic behavior
according to the user interactions. Use case modeling occurs
by interrelating use case elements. We convert actions into
tasks; triggers become events that may change the process
flow. Preconditions determine the system behavior in a par-
ticular situation; thus, preconditions provide hints of process
contexts. The context constraint element of CAPLUC [16]
captures the necessary use case adaptations.

Specify features requires classifying each elicited feature,
besides associating features to requirements and defining
their priority. The feature is defined as a fundamental, and
typically perceivable by stakeholders, characteristics of a
product line [26]. We propose specifying features with the
Odyssey-FEX meta-model [15]. Each feature is classified by
category, variability, and optionality (details in Section 3.2).
Map requirements to features means associating DSPL
features to requirements, plus defining the feature prior-
ity. The feature-requirement association aims at supporting
the variability management: establishing these associations
helps in tracking features. This activity is supported by a
heuristic that maps variability into domain artifacts of lower
level abstraction levels [8].

Identify and specify context means estimating the pos-
sible contexts that encompass a DSPL and modeling these
contexts in a comprehensive manner. The output is a context
model that should carefully address the domain engineer
estimations and the contexts elicited with the support of
stakeholders. Context models are responsible for qualifying,
quantifying, and classifying each context. Context models
are very helpful in specifying and documenting context fea-
tures. We adapted a template originally provided by Provop
to support the context modeling (details in Section 3.2).
Identify and specify context features has to major goals.
The first goal is identifying the so-called context features, i.e.,
those features that should be managed in run-time according
to the context. The second goal is specifying each context
feature. Context features have to be clearly associated with
one or more contexts. Thus, it is possible to describe whether
and when a feature will be (de)activated for a given context.
From the context feature specification, we have the context
rules that drive the DSPL self-adaptation.

Identify context adaptation consists of identifying, in the
elicited DSPL adaptation scenarios: (1) the DSPL require-
ments that have variations and (2) which are the variants by

4.3

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

requirement. Dynamic adaptation scenarios typically have
trigger (i.e., events) and contexts that change the main flow
of a use case business process. Thus, it is fundamental to
carefully characterize as many variations as possible.

e Model context adaptations of business process consists

of building a model that represents all context adaptations.
This model is responsible for indicating which features be-
long to each adaptation scenario. This model has a scenario
identifier, the specified contexts, and the qualification values
by context. After building the model, it is necessary to specify
each context feature. The relationships between features and
context are defined. Thus, it becomes clear which features
should be (de)activated given a context; this information
derives helps to derive the context rules.

Phase 3: Variability Management

Figure 7 overviews the variability management phase. This phase
has three major goals. The first goal is building a feature model
that summarizes all the DSPL features that should be implemented.

The

second goal is performing the tracking of variability require-

ments and features. The third goal is inspecting the feature model.
The entire phase has four activities in total, which are distributed
according to the three goals as discussed below.

Variability management

Representation

Specification
D document D D erer
1 Development of the : : Verification :
: feature model : : :

report
Features
matrix

Requirements and
features trackina

Feature model

Incansistencies Type of

. i inthe model - error
verification Yes verificition
No Specification
error

Figure 7: Phase 3 - Variability Management

e Development of the feature model means organization
in a model that represents all possible product-line configura-
tions [23] [26]. Feature models usually have four layers [26]:
Capability Layer represents general services, operations, and
non-functional aspects of products; Operating Environment
Layer regards the internal functions of products required
to provide services; Domain Technology Layer represent the
domain-specific techniques employed to implement services
and operations; and Implementation Technique Layer covers
generic implementation techniques for services, operations,
and domain functions. This activity is supported by DyMMer-
NFP [37], ultimately performed by the domain engineer.

¢ Requirements and features tracking. Traceability is re-
lated to the capability to clearly understand the interrela-
tions of entities [41]. Project management has been taking
advantage of traceability for understanding, explaining, and
evolving processes of different natures. Our work explores
traceability management as a means to understand the rela-
tionship between DSPL requirements and features. For this
purpose, we adapted the traceability matrix introduced by
a previous work [31]. The original traceability matrix deals



SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

with traditional SPL. Instead of marking as mandatory the
features that are included into all derived products, we mark
these features as either mandatory or context (i.e., the feature
inclusion depends on the context information).

e Feature model verification aims at identifying errors in
the feature model built during the previous activity. We
recommend the feature model inspection guided by FM-
Check [14]. This is a checklist-based approach that captures
different quality aspects of a feature model, such as correct-
ness and consistency (see Section 3.2). We adapted FMCheck
according to the feature classification used in Phase 2.

e Error type verification. We recommend errors in the fea-
ture model to be classified as follows: omission, incorrect
fact, inconsistency, ambiguity, and strange information. If
the feature model has no apparent errors, then the phase
is completed. Otherwise, in case of representation errors,
domain engineers go back to the first activity of Phase 3; in
case of specification errors, go back to Phase 2.

5 PRELIMINARY EVALUATION

Section 5.1 introduces the preliminary evaluation goal and partici-
pants. Section 5.2 presents the evaluation procedures. Section 5.3
discusses the obtained results.

5.1 Goal and Participants

We followed the Goal Question Metric template [43] to define our
evaluation goal as follows: analyze some basic activities defined in
REMA4DSPL; for the purpose of understanding the potential method
applicability; with respect to fundamental DSPL requirements en-
gineering activities (elicit requirements, document contexts, and
document use cases) as supported by the method; from the view-
point of two experts in DSPL domain engineering; in the context of
a small-sized context-sensitive system.

As a preliminary evaluation, we recruited participants (P1 and
P2) with a varied background. We asked them about self-assessed
skills in a five-point Likert scale: 1 (low), 2 (medium), 3 (good), 4
(high), and 5 (excellent). P1 reported: high skills in SPL, DSPL and
feature modeling; good skills in software modeling and dynamic
aspects modeling; and medium skills in BPMN. P2 reported: good
skills in SPL, DSPL, feature model, and software modeling; medium
skills in dynamic aspects modeling; and low skills in BPMN. P1
had between one and five years of experience with SPL and DSPL
engineering against less than one year for P2. Both participants:
applied a (D)SPL approach to developer product lines along with
their research; they had between one and five years of experience
with software modeling each; and they had less than one year of
experience with dynamic aspects modeling. In summary, we could
state that P1 is slightly more experienced than P2.

5.2 Procedures

We designed a controlled evaluation to be performed in a single
session and in a research laboratory environment. We did not re-
strict the total evaluation time, and participants took 3 hours and
18 minutes on average to complete all assigned tasks. We guided
the execution of tasks so that the participants could perform them
at the same time. We made available the evaluation artifacts (in

Sousa et al.

Portuguese) in the paper’s companion website [33]. The controlled
evaluation followed three steps as follows:

e Preparation consisted of preparing the participants for the
evaluation. We first applied a Consent Form so that each par-
ticipant could allow us to collect data of study purposes only.
The participants filled out a Characterization Form aimed to
collect self-assessed skills with (D)SPL engineering and fea-
ture modeling. In the sequence, we trained the participants
about REM4DSPL (30 minutes were spent) and the evalua-
tion procedures (30 minutes spent). We spent ten minutes to
answer questions without compromising the evaluation.

¢ Execution consisted of performing the REM4DSPL evalua-
tion itself. We first distributed the Activity List that discrimi-
nated the four evaluation activities: 1) Identify use cases from
a given use scenario description defined by a researcher; 2)
Identify and model requirements, features, context adapta-
tions, and use cases process; 3) Manage variabilities in order
to build a feature model for a given domain; and 4) Track
requirements and features for different scenarios. After that,
we distributed the following support artifacts: 1) Use Case
Description; 2) Scenarios Document; 3) Specification Docu-
ment; and 4) Traceability Matrix Template.

e Conclusion consisted of completing the preliminary eval-
uation. We applied a Follow-up Form in which participants
could provide their feedback on the performed evaluation.

We present below the use case description.

Mary and John are a couple that travels to work a lot. Both do
some great meals whenever they are at home. Mary drinks milk every
morning, and John always cooks eggs. Aimed to keep products always
available and fresh, besides saving money by opening the fridge less
frequently, Mary convinced John to buy a smart fridge. Since then, the
newly acquired fridge notifies the couple in many ways (either wi-fi,
Bluetooth, or even the fridge’s LCD screen), about the status of previously
registered products. The LCD screen displays the products. The fridge
monitors products, via electronic tags, and informs whenever products
are close to the expiration date, based on the product bar codes. The
fridge also notifies if some a couple’s favorite product is missing, or
maximum and minimum product amounts are reached. Mary defined
that the fridge can have a minimum and maximum of seven and 50
units by product, respectively. Certain amounts of products stored make
the fridge to change its cooling and pressurizing settings. all changes
are notified to Mary and John. Changes may also reflect the number of
times the fridge’s door was opened in a given time interval.

5.3 Preliminary Results

We have investigated the participants’ perceptions of the method’s
applicability based on five questions. We introduces each question
and the observed results as follows.

Q1: What was the effort expended to identify use cases using the
template provided by the method? — In general, the effort spent to
identify use cases was low. The participants have identified four
different use cases. Three out of four identified use cases (75%)
were expected by considering our reference list of use cases. P2
mentioned that identifying use cases was helpful to elicit DSPL
requirements and candidate features. However, P2 also mentioned



REM4DSPL: A Requirements Engineering Method for
Dynamic Software Product Lines

his lack of experience with defining some elements of the CAPLUC
template [16], e.g., reuse category. Such lack of experience partially
explains why participants spent a considerable time to identify use
cases. Additionally, we consider this feedback as an opportunity for
adding up descriptive information to the template; thus, domain engi-
neers can clearly understand what kind of information is expected
by the template field.

Q2: What was the effort expended to perform the identification
and specification of features? — Regarding the activity of identifying
features, the participants P1 and P2 reported that a medium and low
effort was required, respectively. However, P1 reported a certain
difficulty in associating features to requirements. Regarding the
creation of rules for the activation and deactivation of features, both
participants reported a medium effort. In addition, P2 has suggested
representing in the rules the quantification instead of the qualification.
This suggestion would require a low adaption effort in the template.

Qs3: What was the effort expended to specify the contexts using
the template provided by the method? — In general, the participants
have reported a medium effort to specify the contexts. During the
observation activity, P1 said it was difficult to associate the template
information with the context modeling. Thus, we have found an
interesting opportunity to design mechanisms (e.g., a notation or a
documentation template) that could guide domain engineers during
this task. Conversely, P2 reported that the use of the template was
helpful during the modeling of context and their adaptation rules.

Q4: What was the effort expended to modeling use cases using
the Provop approach proposed by the method? — In general, both
participants reported a medium effort to model use cases using the
Provop approach. The participant P1 mentioned that the method
might be used to explore and communicate the likely actions of
users when interacting with the system. Besides, the participant
P1 mentioned that the used approach to modeling the context
adaptation might support in identifying alternative behaviors. We
observed that the participant P2 was able to model the static process
without difficulty. However, P2 has struggled a little while modeling
the context adaptation of use cases. In future work, we could elaborate
mechanisms for alleviating such struggle.

Qs: What was the effort expended to build the traceability matrix
of the features and the feature model? — Regarding the traceability
matrix, both participants reported a low effort to construct the
traceability matrix. For instance, the participant P2 reported that
it was possible to visualize possible differences in feature model
configuration. The participant P1 also reported that the templates
provided by the method facilitated the construction of the trace-
ability matrix. Regarding the construction of the feature model, the
participants have used the DyMMer-NFP tool [37] to support the
construction of feature models. Both traceability matrix and con-
text adaptation scenarios served as sufficient guidance to building
the feature model. None of the participants found hard to build
the feature model, which is a quite positive result to the overall
selection of supporting techniques and templates for this task.

In summary, both participants (P1 and P2) agreed that REM4DSPL
assisted in the elicitation, modeling, and management of variability
requirements in DSPL. Participants have emphasized the useful-
ness of the recommended and the tooling support, especially for
feature modeling (which is a key activity). In addition, the facility
to perform the elicitation and management of variability has been

SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

reported as an advantage of the method. Nevertheless, the time
spent by the two DSPL experts to fill up the templates, summed
up with the complexity of using Provop for modeling the use case
processes, has been mentioned as a drawback. We expect to address
these limitations in future work and re-evaluate our method.

6 THREATS TO VALIDITY

We discuss below some threats to the study validity [43].

Construct Validity. We carefully designed the protocol em-
ployed for building the REM4DSPL method. For instance, we defined
the method’s phases and activities based on empirically-derived
data. Especially, we relied on the outcomes of a literature review [13]
in order to mitigate problems with a low literature coverage. Thus,
we expect our method to encompass the key activities of DSPL
domain engineering. We also relied on the literature for identi-
fying techniques and templates to support certain activities (see
Section 3). Whenever adaptations to the DSPL domain were nec-
essary, the paper authors have discussed strategies to refine the
existing techniques and templates. By doing that, we expected to
reuse as much literature contributions as possible. With respect to
the preliminary method evaluation, we designed and refined the
artifacts (especially the forms) prior to the evaluation execution.
We validated the forms in pairs after a few discussion rounds, so
that we could properly collect data for analysis.

Internal Validity. While building and documenting REM4DSPL,
we counted on the participation of at least two of the paper authors.
The BPMN diagrams and the descriptions of phases and activities
were carefully defined and discussed. Thus, we expected to avoid
missing and conflicting information. Regarding the preliminary
evaluation, we have followed strict procedures to run the obser-
vational study with DSPL experts. We collected the participants’
background prior to the evaluation execution. We trained the par-
ticipants with respect to the method and the evaluation procedures.
We answered participants’ questions carefully to avoid biasing the
evaluation results and misunderstandings.

Conclusion Validity. We knew that it would be quite hard to
evaluate the whole method through an observational study that
lasted only a few hours. Thus, we carefully performed the qualita-
tive data analysis in order to draw conclusions about the particular
activities covered by the evaluation design. We carefully tabulated
and validated the participants’ data performing the analysis. Thus,
we expected to avoid missing and incorrect data.

External Validity. We are aware of the generality of our study
results with respect to the DSPL domain engineering community.
In fact, our preliminary evaluation counted on only two DSPL ex-
perts. We tried to minimize threats to validity by recruiting experts
with varied background: while one participant has considerable
expertise with (D)SPL modeling, the other participant holds a more
modest background. Despite the limitations, we were able to cap-
ture some advantages, drawbacks, and improvement opportunities
for REM4DSPL. Still, we will plan to perform additional evaluations
of the method in the near future.

7 FINAL REMARKS

This paper introduces the Requirements Engineering Method for
Dynamic Software Product Line (REM4DSPL). Our method provides



SBQS’19, October 28-November 1, 2019, Fortaleza, Brazil

guidance to domain engineers while elicitation, modeling, and man-
aging variabilities in DSPL. REM4DSPL was empirically-derived
and relies on techniques and templates either reused or adapted
from the literature. Aimed at performing a preliminary evaluation
of the method, we counted on the feedback of two DSPL experts.
From an expert perspective, our method was quite useful to reveal
critical aspects of DSPL (features, interrelations, and adaptation
scenarios). The participants provided us with insights for future
refinements that can drive a future method re-evaluation. As future
work, we plan to improve our method based on the experts’ feed-
back. Especially, we aim to propose mechanisms that alleviate some
DSPL domain engineering activities that are still hard to perform.

ACKNOWLEDGMENTS

This work is funded by CNPq (465614/2014-0), INES 2.0, FACEPE
(APQ-0399-1.03/17), and CAPES (88887.136410/2017-00).

REFERENCES

[1] Mohammed Alawairdhi and Eisa Aleisa. 2011. A scenario-based approach for

[2

(3

[10

[11

[12

[13

[14

[15

[16

[17

(18

—

]

]

]

requirements elicitation for software systems complying with the utilization of
ubiquitous computing technologies. In 35th COMPSACW. 341-344.

Vander Alves, Nan Niu, Carina Alves, and George Valenca. 2010. Requirements
engineering for software product lines: A systematic literature review. Inform.
Softw. Tech. (IST) 52, 8 (2010), 806-820.

Carlos Batista and Carla Silva. 2015. Um Processo Criativo de Elicitacdo de
Contextos para Sistemas Sensiveis ao Contexto. (2015). In Portuguese.

Jorg Becker, Michael Rosemann, and Christoph Von Uthmann. 2000. Guidelines
of business process modeling. In Business process management. Springer, 30-49.
Nelly Bencomo, Svein Hallsteinsen, and Eduardo Santana De Almeida. 2012. A
view of the dynamic software product line landscape. Computer 45, 10 (2012),
36-41.

Carla I. M. Bezerra, Jefferson Barbosa, Jodo Holanda Freires, Rossana M. C. An-
drade, and José Maria S. Monteiro. 2016. DyMMer: A Measurement-based Tool
to Support Quality Evaluation of DSPL Feature Models. In 20th SPLC.

Andreas Birk, G Heller, I John, S Joos, K Muller, K Schmid, and T von der Massen.
2003. Report of the GI Work Group" Requirements Engineering for Product Lines.
(2003).

Ana Paula Terra Bacelo Blois, Regiane Felipe de Oliveira, Natanael Maia, Claudia
Werner, and Karin Becker. 2006. Variability modeling in a component-based
domain engineering process. In 9th 2006. 395-398.

Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Cortés, and Mike Hinchey.
2014. An overview of Dynamic Software Product Line architectures and tech-
niques: Observations from research and industry. . Syst. Softw. (3SS) 91 (2014),
3-23.

Lawrence Chung and Julio Cesar Sampaio do Prado Leite. 2009. On non-functional
requirements in software engineering. In Conceptual modeling: Foundations and
applications. Springer, 363-379.

Jane Cleland-Huang, Raffaella Settimi, Chuan Duan, and Xuchang Zou. 2005.
Utilizing supporting evidence to improve dynamic requirements traceability. In
13th RE. IEEE, 135-144.

Paul Clements and Linda Northrop. 2002. Software product lines: practices and
patterns. (2002).

Léuson M. P. da Silva, Carla I. M. Bezerra, Rossana M. C. Andrade, and José
Maria S. Monteiro. 2016. Requirements Engineering and Variability Management
in DSPLs Domain Engineering: A Systematic Literature Review. In 18th ICEIS.
Rome, Italy, 544-551.

Rafael Maiani de Mello, Eldanae Nogueira, Marcelo Schots, Claudia Maria Lima
Werner, and Guilherme Horta Travassos. 2014. Verification of Software Product
Line Artefacts: A Checklist to Support Feature Model Inspections. 7. UCS 20, 5
(2014), 720-745.

Regiane Felipe de Oliveira, Ana Paula Blois, Aline Vasconcelos, and Claudia
Werner. 2005. Metamodelo de Caracteristicas da Nota¢do Odyssey-FEX: Descri¢ao
de Classes. (2005).

Ismayle de Sousa Santos, Rossana M de Castro Andrade, and Pedro de Alcantara
dos Santos Neto. 2013. A Use Case Textual Description for Context Aware SPL
Based on a Controlled Experiment.. In 25th CAiSE. 1-8.

Alessandro Fantechi, Stefania Gnesi, Isabel John, Giuseppe Lami, and Jérg Dorr.
2003. Elicitation of use cases for product lines. In 15th PFE. 152-167.

Eduardo Fernandes, Gustavo Vale, Leonardo Sousa, Eduardo Figueiredo, Alessan-
dro Garcia, and Jaejoon Lee. 2017. No code anomaly is an island. In 16th ICSR.
Springer, 48—64.

[19

[20

)
=

[22

(23]

[24]

&
i

[26

[27

[28

[29

[30

w
—

(32]

[33

(34

(35]

&
2

®
=

'w
2

S
&

Sousa et al.

Samuel Fricker and Reinhard Stoiber. Relating Product Line Context to Require-
ments Engineering Processes Using Design Rationale.. In Software Engineering
(Workshops). 240-251.

Alena Hallerbach, Thomas Bauer, and Manfred Reichert. 2010. Capturing vari-
ability in business process models: the Provop approach. Journal of Software
Maintenance and Evolution: Research and Practice 22, 6-7 (2010), 519-546.

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. 2008. Dy-
namic software product lines. Computer 41, 4 (2008), 93-95.

Dan Hong, Dickson KW Chiu, and Vincent Y Shen. 2005. Requirements elicitation
for the design of context-aware applications in a ubiquitous environment. In 7th
ICEC. Taiwan, China, 590-596.

Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Pe-
terson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Technical
Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

Kavi Kumar Khedo. 2006. Context-aware systems for mobile and ubiquitous
networks. In International Conference on Networking, International Conference on
Systems and International Conference on Mobile Communications and Learning
Technologies (ICNICONSMCL’06). IEEE, 123-123.

Gerald Kotonya and Ian Sommerville. 1998. Requirements engineering: processes
and techniques. Wiley Publishing.

Kwanwoo Lee, Kyo C Kang, and Jaejoon Lee. 2002. Concepts and guidelines of
feature modeling for product line software engineering. In 7th ICSR. 62-77.
Fabiana G Marinho, Rossana MC Andrade, Claudia Werner, Windson Viana, Mar-
cio EF Maia, Lincoln S Rocha, Eldanae Teixeira, Jodo B Ferreira Filho, Valéria LL
Dantas, Fabricio Lima, and others. 2013. MobiLine: A Nested Software Prod-
uct Line for the domain of mobile and context-aware applications. Science of
Computer Programming 78, 12 (2013), 2381-2398.

Danuza Neiva, Fernando Cesar de Almeida, Eduardo Santana de Almeida, and
Silvio Lemos Meira. 2010. A requirements engineering process for software
product lines. In 11th IR 266-269.

Nan Niu and Steve Easterbrook. 2008. Extracting and modeling product line
functional requirements. In 16th RE. 155-164.

Vanessa Tavares Nunes, Flavia Maria Santoro, and Marcos RS Borges. 2007.
Capturing context about group design processes. In 11th CSCWD. 18-23.

Klaus Pohl, Giinter Bockle, and Frank J van Der Linden. 2005. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media.

P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein. 2010.
Requirements-Aware Systems: A Research Agenda for RE for Self-adaptive Sys-
tems. In 18th RE. 95-103.

Amanda Sousa, Anderson Uchda, Eduardo Fernandes, Carla 1. M. Bezerra,
José Maria Monteiro, and Rossana M. C. Andrade. 2019. Research website. (2019).
Available at: https://anderson-uchoa.github.io/SBQS2019/.

Turi Souza, Rafael de Mello, Eduardo de Almeida, Claudia Werner, and Guilherme
Travassos. 2016. Experimental evaluation of FMCheck: A replication study. In
15th SBQS. 121-135.

Anil Kumar Thurimella and Bernd Bruegge. 2007. Evolution in product line
requirements engineering: A rationale management approach. In 15th RE. 254~
257.

Anderson G Uchda, Carla IM Bezerra, Ivan C Machado, José Maria Monteiro, and
Rossana MC Andrade. 2017. ReMINDER: an approach to modeling non-functional
properties in dynamic software product lines. In 16th ICSR. 65-73.

Anderson G Uchoéa, Luan P Lima, Carla IM Bezerra, José Maria Monteiro, and
Rossana MC Andrade. 2017. DyMMer-NFP: Modeling Non-functional Properties
and Multiple Context Adaptation Scenarios in Software Product Lines. In 16th
ICSR. 175-183.

Gustavo Vale, Eduardo Fernandes, and Eduardo Figueiredo. 2018. On the proposal
and evaluation of a benchmark-based threshold derivation method. Software
Quality Journal (SQ7) (2018), 1-32.

Vaninha Vieira, Marco AS Mangan, Claudia Werner, and Marta Mattoso. 2004.
Ariane: An awareness mechanism for shared databases. In 10th CRIWG. 92-104.
Jéssyka Vilela, Jaelson Castro, and Jodo Pimentel. 2016. A systematic process
for obtaining the behavior of context-sensitive systems. Journal of Software
Engineering Research and Development 4, 1 (2016), 2.

Robert Watkins and Mark Neal. 1994. Why and how of requirements tracing.
ITeee Software 11, 4 (1994), 104-106.

Stephen A White. 2004. Introduction to BPMN. Ibm Cooperation 2, 0 (2004), 0.
Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Chang Xu, SC Cheung, Xiaoxing Ma, Chun Cao, and Jian Lu. 2012. Adam:
Identifying defects in context-aware adaptation. J. Syst. Softw. (JSS) 85, 12 (2012),
2812-2828.

Didar Zowghi and Chad Coulin. 2005. Requirements elicitation: A survey of tech-
niques, approaches, and tools. In Engineering and managing software requirements.
Springer, 19-46.


https://anderson-uchoa.github.io/SBQS2019/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 DSPL Requirements Engineering
	2.2 Current Support and Limitations

	3 Study Settings
	3.1 Steps to Build the Method
	3.2 Supporting Techniques
	3.3 Supporting Templates

	4 REM4DSPL at a Glance
	4.1 Phase 1: Requirements Elicitation
	4.2 Phase 2: Requirements Modeling
	4.3 Phase 3: Variability Management

	5 Preliminary Evaluation
	5.1 Goal and Participants
	5.2 Procedures
	5.3 Preliminary Results

	6 Threats to Validity
	7 Final Remarks
	Acknowledgments
	References

