
Are Code Smell Co-occurrences Harmful to InternalQuality
Attributes? A Mixed-Method Study

Júlio Martins
Campus Quixadá - UFC
Quixadá, CE, Brazil

juliomserafim@gmail.com

Carla Bezerra
Campus Quixadá - UFC
Quixadá, CE, Brazil
carlailane@ufc.br

Anderson Uchôa
DI - PUC-Rio

Rio de Janeiro, RJ, Brazil
auchoa@inf.puc-rio.br

Alessandro Garcia
DI - PUC-Rio

Rio de Janeiro, RJ, Brazil
afgarcia@inf.puc-rio.br

ABSTRACT
Previous studies demonstrated how code smells (i.e., symptoms
of the presence of system degradation) impact the software main-
tainability. However, few studies have investigated which code
smell types tend to co-occur in the source code. Moreover, it is not
clear to what extent the removal of code smell co-occurrences –
through refactoring operations – has a positive impact on qual-
ity attributes such as cohesion, coupling, inheritance, complexity,
and size. We aim at addressing these gaps through an empirical
study. By investigating the impact of the smells co-occurrences
in 11 releases of 3 closed-source systems, we observe (i) which
code smells tend to co-occur together, (ii) the impact of the re-
moval of code smell co-occurrences on quality internal attributes
before and after refactoring, and (iii) which are the most difficult
co-occurrences to refactoring from the developers’ perspective. Our
results show that 2 types of code smell co-occurrences generally
tend to co-occur. Moreover, we observed that the removal of code
smells co-occurrences lead to a significant reduction in the complex-
ity of the systems studied was obtained. Conversely, cohesion and
coupling tend to get worse. We also found that two code smells co-
occurrences (God Class–Long Method and Disperse Coupling–Long
Method) as the most difficult to refactor indicating that attention
is needed not to insert these anomalies in the source code. Based
on our findings, we argue that further research is needed on the
impact of code smells co-occurrences on internal quality attributes.

CCS CONCEPTS
• Software and its engineering → Software evolution;Main-
taining software.

KEYWORDS
Code Smells Co-occurrences. Refactoring. Quality Attributes.

ACM Reference Format:
Júlio Martins, Carla Bezerra, Anderson Uchôa, and Alessandro Garcia. 2020.
Are Code Smell Co-occurrences Harmful to Internal Quality Attributes? A
Mixed-Method Study. In 34th Brazilian Symposium on Software Engineering
(SBES ’20), October 21–23, 2020, Natal, Brazil. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3422392.3422419

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09.
https://doi.org/10.1145/3422392.3422419

1 INTRODUCTION
The software quality is critical and essential in different types of
organizations and systems, such as real-time systems and control
systems. A good quality of software can allow the evolution of these
systems to have less effort and financial expenses [3]. Throughout
its evolution, the software systematically undergoes changes that
can lead to the deterioration of the quality of its structure [5, 49]. In
this context, the concept of code smells arises, which are anomalous
code structures that represent symptoms that affect the maintain-
ability of systems at different levels, such as classes and meth-
ods [20, 27]. Code Smells can indicate problems related to aspects
of code quality such as understandability and modifiability [20].

Some studies have evaluated not only the individual occurrences
of code smells, but also the relationships between these anomalies
and the impact they have on the software quality [55, 56]. The pres-
ence of individual occurrences of code smells does not significantly
affect the understanding of the software or the performance of the
developers, the opposite happens when there is a co-occurrence
of these anomalies [1]. Pietrzak and Walter [41] were the first to
investigate the relationship between code smells, which they call
inter-smell relations. The authors define six types of code smells
co-occurrence and claim that the study of these associations and
dependencies between code smells can result in a better under-
standing of potential problems in software quality.

Yamashita and Moonen [55] and Sjøberg et al. [44], indicate that
the code smell co-occurrence is not good indicators of maintainabil-
ity. Oizumi et al. [37] analyzed the code smells co-occurrences to
identify architectural problems: they suggest that clusters of smells
are significantly better indicators of code problems than individual
instances of smells. A possible relationship between Duplicated
Code and Long Method code smells was found by Martins et al.
[32]. The researchers found that the number of Duplicated Code
occurrences increases as the number of Long Method occurrences
also increases. de Paulo Sobrinho et al. [12] conducted a literature
review on code smells. As a result of study [12], the authors identi-
fied that code smells co-occurrences can cause maintenance and
design problems and that more empirical studies are needed to
investigate the impact of these anomalies on the source code.

Refactoring is a process of improving software systems by ap-
plying code transformations [20] as a means to achieve various
developers’ intents and goals [38]. Refactorings can remove code
smells and co-occurrence between them, and this can have a di-
rect impact on code quality [54]. However, the systematic review
performed by Lacerda et al. [26] indicates that there are many
opportunities to use refactoring to remove code smells and their
co-occurrences, and it is a major research challenge to indicate
which refactoring strategies should be applied.

https://doi.org/10.1145/3422392.3422419
https://doi.org/10.1145/3422392.3422419

SBES ’20, October 21–23, 2020, Natal, Brazil Martins et al.

Despite the large number of studies investigating the effects of
individual occurrences of code smells [43], there are still few studies
that investigate the effects of co-occurrences between code smells.
Most of these studies investigate the effects of the co-occurrence
of code smells in open source projects [19, 22, 39]. As it is still a
recent area, studies focus on: investigation of the effects between
code smell co-occurrences and code maintainability [17, 32, 55],
detection of code smells co-occurrences [18, 22, 39–41, 56] and cor-
relation analysis between co-occurrences [52]. Therefore, further
investigation is needed on impact code smells co-occurrences on
quality in closed-source systems [11].

Having established and substantiated the importance of studying
the influence of code smells co-occurrences for software quality in
the context of object-oriented systems. We aim to conduct a study
to investigate the impact of code smells co-occurrences on three
OO closed-source systems in internal quality attributes of these
systems. To guide our study, we have elaborated three research
questions that we want to investigate:

RQ1: Which are the most frequent code smells co-occurrences in
closed-source projects?

RQ2: How does the removal of code smells co-occurrence affect
internal quality attributes in closed-source projects?

RQ3: Which code smells co-occurrences are considered as the most
difficult to remove from the developer’s perspective?

From these research questions, our study obtained the following
results:

• The most frequent co-occurrences of code smells across
projects are God Class–Long Method and Disperse Coupling–
Long Method.

• Co-occurrences increase during the development of the sys-
tem and that the removal of these anomalies has a negative
impact on the cohesion and coupling attributes.

• The removal of code smells co-occurrences suggests a sig-
nificant decrease in the complexity of the systems.

• God Class - LongMethod andDisperse Coupling - LongMethod
co-occurrences were considered the most difficult to refactor
by developers.

The remainder of this paper is organized as follows. Section 2
presents the theoretical background to support the understanding
of this study. Section 3 describes the research method. Section 4
presents the results of the study. Section 5 discusses threats to the
study. Section 6 compares this study with previous studies. Finally,
Section 7 presents the conclusions and future work.

2 BACKGROUND
2.1 Code Smells Detection
Code smells can indicate problems related to aspects of code qual-
ity. As a consequence, they can cause problems for developers in
activities in the maintenance phase of the software [20]. These indi-
cators can affect any system [30, 36]. Previous work [11, 30, 36, 49]
provide evidence that code smells are sufficient indicators of parts
of code affected by poor feature decomposition in the case of single
software systems.

There are several tools for detecting code smells [16]. This study
will use the JSpIRIT tool, a tool with a semi-automatic approach
that focuses on the most critical code smells in the system [50].

Currently this tool can detect 10 code smells [51]. In our study we
detected the following code smells using this tool: Feature Envy,
Disperse Coupling, Intensive Coupling, Refuse Parent Bequest, Shot-
gun Sugery. Another tool used in our study is JDeodorant, which is
an Eclipse plugin for detecting code smells [47]. Currently five code
smells are supported by the tool: Long Method, Feature Envy, God
Class, Type/State Checking, Duplicated Code [47]. In this work,
this tool will detect the God Class and Long Method code smells.
We choose these tools due to their availability and wide use in pre-
vious work [32, 48]. In our study, we studied smells with different
levels of granularity and, we focused on the smell types with the
highest frequencies across the projects, for that reason 7 types of
code smells were analyzed, which are described in Table 1.

Table 1: Code smells analyzed by this work [20]

Code Smells Description
Feature Envy Instructions for a method that should be moved to another

method, sometimes located in another class, whose features are
more shared and used

God Class A very large and complex class, which usually concentrates a
lot of software functionality.

Disperse Coupling Method that calls one or more methods of several classes
Intensive coupling Method that calls several methods from other classes
Refused parent bequest Subclass that does not use the protected methods of its super-

class
Shotgun surgery Method called by many methods from other classes
Long Method Methods with many lines of code and a lot of software logic

2.2 Code Smell Co-occurrences
Code smells co-occurrences occur when there are relationships and
dependencies between two or more code smells. For example, the
same class that is God Class and also has a Duplicated Code [41].

Before detecting code smell co-occurrences, you must first detect
individual code smells. This is necessary to verify and map the co-
occurrences of code smells (i.e. the appearance of more than one
code smell in the same method or the appearance of code smells
in the same class). Thus, our study analyzed the co-occurrences of
seven code smells.

There are several studies in the literature that study only indi-
vidual instances of code smells [1, 24, 44]. However, few studies
address or analyze code smell co-occurrences. Thus, more empirical
studies are needed considering these relations [56]. Pietrzak and
Walter [41] defines some types of code smell co-occurrences aiming
at greater precision in the detection of code smells and the negative
impact that these anomalies can cause in systems.

After detecting individual occurrences of code smells, it is possi-
ble to verify the co-occurrences of code smells at the method level
and at the class level, at the method level they occur when there
are two or more code smells in a given method (i.e., Feature Envy–
Long Method). A class level happens when there is a class-level
code smells (i.e., God Class) along with some other code smells (i.e.,
Long Method) [20]. Lanza and Marinescu [27] identified some rela-
tionships between code smells co-occurrences using the keywords:
has/use. For example, God Class has Disperse Coupling (class level)
and Intensive Coupling uses Shotgun Surgery (method level).

Table 2 shows examples of code smells co-occurrences at the
class and method level. In the first example there is a code smell
co-occurrence (Long Method and God Class), that is, Class1 which

Are Code Smell Co-occurrences Harmful to Internal Quality
Attributes? A Mixed-Method Study SBES ’20, October 21–23, 2020, Natal, Brazil

is a God Class has Method1 which is Long Method. In the second
example, there is a co-occurrence at the method level in which
the two code smells Long Method and Feature Envy are “together”
in Method2. This example represents how we identified the code
smells co-occurrences in our study [41].

Table 2: Examples of code smells co-occurrences

Class Method LM FE GC
Class1 method1() X X
Class2 method2() X X

In this way, individual occurrences of code smells were detected
by automatic tools, and co-occurrences were identified manually
by us so that the refactoring process starts. Refactoring consists of
changing the source code of a system. It can improve the internal
structure by improving the measures of internal quality attributes
such as cohesion, coupling, complexity, size and inheritance [20].
With the refactoring of code smells performed by the developers
to remove co-occurrences, we want to investigate whether there is
any impact on the internal quality attributes of the system.

2.3 Internal Quality Attributes Measures
The ISO/IEC 25010/2011 standard [21], defines the quality as the
degree to which the system satisfies what was established and the
implicit needs of its stakeholders. Software quality can be measured
by different quality attributes, which can be classified as: (i) internal
quality attributes and (ii) external quality attributes [31].

External quality attributes are those that indicate the quality of
the system based on factors that consider the software environment
and the interactions between that environment and the software
artifacts. An example of an external quality attribute is maintain-
ability, which depends on a set of external factors to be evaluated,
such as: the system’s lifetime and the environment for which the
system is being modified [2].

Internal quality attributes, such as size, cohesion and coupling,
are those that can only be measured using only software artifacts.
Quantifying internal quality attributes is much easier than quan-
tifying external attributes, for instance, the size of a class can be
measured using the LOC metric [34]. In our study, we used 13
metrics of internal quality attributes (see Table 3) well known in
the literature [8, 13, 28, 33]. The metrics proposed by Chidamber
and Kemerer [8] are pioneers in the area of object-oriented metrics
and have a theoretical basis for measuring OO code. In this study,
CK metrics [8] was one of the ones chosen to be used to check the
internal quality of systems [14, 31, 48]. To collect the metrics we use
the Understand tool to measure all internal quality attributes [7].

3 STUDY SETTINGS
3.1 Goal and Research Questions
The study of co-occurrences and relations between code smells is a
relatively new area of research. Although there are already studies
in the literature on this topic [39, 41, 52, 56]. None of theses studies
analyzed the impact of co-occurrences or relationships between
code smells on internal quality attributes. Due to limited empirical

Table 3: Metrics of the internal quality attributes analyzed
in this work [8, 13, 28, 33]

Attributes Metric Description
Cohesion Lack of Cohe-

sion of Methods
(LCOM2) [8]

Measures cohesion of a class. The higher the value of
this metric, less cohesive is the class.

Coupling Coupling Between
Objects (CBO) [8]

Number of classes that a class is coupled. The higher
the value of this metric, more coupling is the classes
and methods.

Average Cyclo-
matic Complexity
(ACC) [33]

Average cyclomatic complexity of all nested methods.
The higher the value of this metric , more complex is
the classes and method.

Sum Cyclomatic
Complexity
(SCC) [33]

Sum of cyclomatic complexity of all nested methods.
The higher the value of this metric, more complex is
the classes and methods.

Nesting
(MaxNest) [28]

Maximum nesting level of control constructs. The
higher the value of this metric, more complex is the
classes and methods.

Complexity

Essential Complex-
ity (EVG) [33]

Measure of the degree to which a module contains un-
structured constructs. The higher the value of this met-
ric, more complex is the classes and methods.

Number Of Chil-
dren (NOC) [8]

Number of subclasses of a class. The higher the value
of this metric greater is the degree of inheritance of a
system.

Depth of Inheri-
tance Tree (DIT) [8]

The number of levels that a subclass inherits frommeth-
ods and attributes of a superclass in the inheritance tree.
The higher the value of this metric greater is the degree
of inheritance of a system.

Inheritance

Bases Classes
(IFANIN) [13]

Immediate number of base classes. The higher the value
of this metric greater is the degree of inheritance of a
system.

Lines of Code
(LOC) [28]

Number of lines of code excluding spaces and com-
ments. The higher the value of this metric the larger
the system size.

Lines with Com-
ments (CLOC) [28]

Number of lines with comment. The higher the value
of this metric the larger the system size.

Classes (CDL) [28] Number of classes. The higher the value of this metric
the larger the system size.

Size

Instance Methods
(NIM) [28]

Number of instance methods. The higher the value of
this metric the larger the system size.

knowledge on this subject, our study aims to investigate the impact
of code smells co-occurrences to internal quality attributes.

We summarize our study goal as follows [53]: (i) analyze the
code smells co-occurrences; for the purpose of understating their
impact on internal attributes of software quality; with respect to
which code smells tend to co-occur together, (ii) the removal of code
smell co-occurrences before and after software refactoring, and (iii)
which are the most difficult co-occurrences to refactoring; from the
viewpoint of researchers and software developers; in the context
of three closed-source systems. Our research questions (RQs) are
discussed as follows.

RQ1: Which are the most frequent code smells co-occurrences in
closed-source projects? – RQ1 aims at identifying which and how
often code smells tend to co-occur together. By answering RQ1,
we can reveal the existence of different patterns of code smells
co-occurrences during the process of software development. Addi-
tionally, we can reveal insights for new research in which the study
of these co-occurrences of smells has not yet been carried out.

RQ2: How does the removal of code smells co-occurrence affect
internal quality attributes in closed-source projects? – RQ2 aims at
providing evidence on the impact of the removal of co-occurrence
of code smells on internal quality attributes. Differently from previ-
ous studies [17, 36] that tend to investigate the introduction of co-
occurrence of code smells, RQ2 assesses the impact of the removal
of co-occurrence of code smells on five internal quality attributes
(software cohesion, coupling, complexity, inheritance, and size). To
achieve this goal, the removal of co-occurrences was carried out in

SBES ’20, October 21–23, 2020, Natal, Brazil Martins et al.

practice with the developers of the systems analyzed. By answer-
ing RQ2, we can reveal how the removal of these co-occurrences
impacts on the internal quality attributes.

RQ3: Which code smells co-occurrences are considered as the most
difficult to remove from the developer’s perspective? – RQ3 assesses
which are the most difficult co-occurrences to refactor from the
point of view of the project developers. Our objective with this
research question is to list which are the main co-occurrences of
code smells that developers should be careful not to insert into the
code during the development process.

3.2 Study Steps
This section describes the study steps, in order to support the in-
vestigation of code smells co-occurrences.

Step 1: Select software systems for analysis. We selected 3
Java closed-source software systems that are being developed by
our industrial partners. For this purpose, we ask project managers to
refer us to projects with the following criteria: (i) systems with the
most lines of code; (ii) Systems that were not in their initial versions;
(iii) systems written in the Java language; and (iv) systems that are
already in a production environment. Table 4 presents general data
per system. The first column names the system1. The remainder
columns present: system domain; number of classes; number of
releases; and, number of lines of code (LOC). We collected all data
via Understand.

Table 4: General data of the target software systems

System Domain # of classes # of releases # LOC
S1 Electronic dental record 145 5 7830
S2 Academic offer 99 4 5623
S3 Warehouse 106 3 5447

The S1 aims to provide integrated monitoring of patients seen
at the different dentistry clinics. S2 aims to assists in the process
of offering required courses at the beginning of each academic
semester at the University. Finally, S3 aims to manage warehouses
at the dental clinics of the University, allowing to control the stock
of materials used in the Dentistry course, in addition to making
material inputs and outputs individually for each clinic. All the
target systems are web-based and developed using Spring Boot,
Thymeleaf and Jquery technologies.

Step 2: Identify code smells and their co-occurrences. We
identified seven types of code smells: Feature Envy, God Class, Dis-
perse Coupling, Intensive Coupling, Refused Parent Bequest, Shotgun
Surgery and Long Method. Table 1 describes the seven code smells
collected. The code smells were collected using two tools, JDeodor-
ant [24] and JSpIRIT [50]. Next, we identified the co-occurrences
of the code smells collected. The types of relationships used to
identify the co-occurrences are described in Section 2.2. This step
is replicated for all releases of the three selected software systems.
Therefore, it will be possible to identify which code smells co-
occurrences tend to appear most during the development process
and the total number of these relationships.

1We omitted their names due to intellectual-property constraints.

Step 3: Measure internal quality attributes. Table 3 presents
the 13 code metrics that we used to measure internal quality at-
tributes [8, 13, 28]. The first column lists the internal quality at-
tributes. The second column presents the software metrics related
to each internal quality attribute. Finally, the third column describes
each metric. To compute each metric, we used a non-commercial
license of the Understand tool. We selected theses metrics because
they enable us to assess different properties of each attribute [6, 8],
such as LOC and CBO that measures the size and coupling, re-
spectively. Therefore, these code metrics can reveal the effect of
code smells co-occurrences on these internal quality attributes. We
chose to perform the analysis in a class-level scope. In total we
measurement five quality internal attributes: cohesion, coupling,
complexity, size, and inheritance.

Step 4: Removal of code smells co-occurrences with software
developers.This step aims to conduct the removal of co-occurrences
of the code smells identified in Step 2. For this purpose, we have
recruited developers who contributes to the development of each se-
lected software system to participate as subjects in the study. Thus,
we sent a Characterization Form for each developer. This form aimed
to characterize the developer regarding education, experience with
software development, and their projects. Their answers were an-
alyzed to determine which of them were eligible to participate in
the study. Table 5 summarizes the characteristics of each developer
selected for the experiment. All the developers are from the same
company, but not everyone was aware of all systems; 5 had prior
knowledge of S1, 4 of S2, and 5 of S3. The company released the
developers as a regular part of the job.

Table 5: Characterization of developers

ID Experience
in years

Education
Level

Quality
Metrics

Code
Smells Java

P1 5 Graduate Degree Advanced Intermediary Intermediary
P2 1 Graduate Degree Basic Basic Intermediary
P3 2 Graduate Degree Advanced Advanced Advanced
P4 5 Graduate Degree Intermediary Basic Advanced
P5 2 Graduate Degree Intermediary Intermediary Intermediary
P6 3 Graduate Degree Advanced Advanced Advanced
P7 5 Master Degree Intermediary Intermediary Intermediary

After selected the developers we asked them to perform the
removal of code smells co-occurrences (method level and class
level) in their systems thought manual software refactoring. We
explain in more detail the experimental procedure used to remove
the code smells co-occurrences in Section 3.3.

Step 5: Perform a newmeasurement of the internal quality
attributes. After the removal of code smells co-occurrences, we
performed new measurements of the internal quality attributes.
Our goal was to compare the value of the metrics for each release
of the system before and after the removal of the code smells co-
occurrences thought manual software refactoring. The set of quality
metrics used to measure the internal quality attributes are described
in Table 3. The comparison was made through the results of the
quality metrics, and the comparison it was done with the most
current version of each system before removing the co-occurrences
and with that same system after the procedure of removing code
smell co-occurrences.

Are Code Smell Co-occurrences Harmful to Internal Quality
Attributes? A Mixed-Method Study SBES ’20, October 21–23, 2020, Natal, Brazil

To assess whether the quality of the systems improved or wors-
ened after removing code smells co-occurrences, we used the same
approach of Tarwani and Chug [46], in which the authors use the
sum of the metrics to compare the quality of systems. This means
that if the value of the sum of the metrics of each internal quality
attribute increased that internal quality attribute had a worsen-
ing, for example we used four metrics to evaluate the complexity
attribute as shown in the Table 3 we measure and calculate the
sum of the values of each metric of this attribute before removing
co-occurrences and after refactoring three scenarios are considered:

(1) If the sum of these metrics has decreased, then complexity
has decreased.

(2) If the sum of these metrics has increased, then the complexity
has increased.

(3) If there was no difference between the sums then the com-
plexity has not changed.

In this way, we take this approach to all othermetrics and internal
quality attributes. Details on detecting code smell co-occurrences
and measuring systems before and after removing code smells co-
occurrences are found in our research website2.

3.3 Experimental Procedures
The study was composed by a set of four activities. We describe
each activities as follows.

Activity 1: Training session. We conducted a training session
with all participants about essential concepts for the study, such
as code smells, internal quality attributes, and refactoring. We also
trained the participants about how to identify the code smells co-
occurrences. We spent an hour and a half. We presented a set of
practical examples that illustrate refactoring operations that could
be applied in each code smell presented in the first part of the
training. Next, we provide a set of toys examples for developers to
apply refactoring methods to remove code smells. We spent two
hours. We decided to provide a training session to level up their
knowledge about the main concepts regarding our study. Thus, we
tried to reduce the bias by focusing onmain concepts and presenting
theoretical and practical examples.

Activity 2: Removal of co-occurrences of code smells via
manual refactoring.We asked developers to perform the removal
of code smells co-occurrences (method level and class level) in their
systems thought manual software refactoring. For instance, if there
is an occurrence of the Long Method and Feature Envy in the same
method, the developer can choose only one of these code smells to
remove. This removal results in the elimination of the co-occurrence
at the method level. On the other hand, a co-occurrence at class-
level happens when there is a God Class or Refused Parent Bequest
along with some other code smell, in which case the developers
could also choose which of the code smells to removal, thus de-
characterizing the class-level co-occurrence.

To support the removal of code smells co-occurrences, we pro-
vided participants a list that summarized the name of methods or
classes in which the co-occurrences of code smells were identified
from Step 2. Additionally, for each code smell co-occurrence, we
created issues on the Github related to refactoring activities. Each
issue contained information about the class and the method affected
2https://julioserafim.github.io/SBES2020/

by a code smell. Thus, the developers were free to choose issues,
and consequently, which code smell to refactor to remove the co-
occurrence. We conducted weekly meetings to check the progress
of the activities and if the developers founded any type of difficulty
or obstacle in the refactoring process. We instructed developers to
make it clear which commits were related to a refactoring activity.
Thus, each commit has tagged to with the label representing the
name of the code smell to be refactored to de-characterize the co-
occurrence (i.e. God Class). Additionally, separate branches were
created for each of the refactoring activities.

Activity 3: Validation of the removal of code smells co-
occurrences.We analyzed the commits to see if the co-occurrence
was eliminated by the programmer. At each refactoring commit,
we validate the refactoring of the co-occurrence. If validated, the
branch code should be committed to the master repository. If the
activity was not validated, the developer should refactor one more
time until the co-occurrence is no longer characterized.

The analysis of the projects occurred at different times, that is,
we did not analyze the three systems at the same time. The first
project we studied was the S1 system, the second was the S2 system
and finally the S3 system. The entire refactoring, analysis and study
process for the three projects took three months and included seven
different developers.

And to perform the removal of code smells co-occurrences in
each system, several commits were necessary. As can be seen in
Table 6. In this table we present the number of refactoring commits
and the number of co-occurrences removed in each of the systems.

Table 6: Number of refactoring commits and number of co-
occurrences removed

System # co-occurrences
removed

refactoring
commits

total of
commits

S1 37 95 2993
S2 33 51 1045
S3 24 37 1217

Activity 4: Apply follow-up questionnaire. After refactor-
ing activities, we apply a questionnaire to check the developers’
perception of these activities. For example, we asked them if they
had already used the concepts of code smells, refactoring and qual-
ity metrics. We also asked to tell us which were the hardest and
easiest code smells and the hardest and easiest co-occurrences to
refactor and we asked the reasons for their responses.

4 RESULTS AND DISCUSSION
4.1 The Frequency of Code Smells

Co-occurrences (RQ1)
We address RQ1 by identifying the most frequent co-occurrence
of code smells in the releases of the three target systems. The
procedures that we used to identify the code smells co-occurrences
are described in Section 3.3. Table 7 presents the frequency of each
co-occurrence grouped by system and release. The first and second
columns list each system and release, respectively. The remaining
columns present each code smell co-occurrence.

The most frequent code smells co-occurrences. Table 7 al-
lows us to observed that there are at least five types of code smells

SBES ’20, October 21–23, 2020, Natal, Brazil Martins et al.

Table 7: Code smells co-occurrences in the three systems

System Release FE and LM DCO and LM DCO and FE GC and LM IC and LM GC and SS FE and GC FE and RPB DCO and GC FE and SS
v1.0 9 1 5 7 0 1 2 2 0 0
v1.1 15 6 4 7 1 1 5 2 0 0
v1.2 10 8 3 9 1 1 4 2 0 0

S1 v1.3 12 8 3 9 1 1 3 0 0 0
v1.3.1 11 8 3 7 1 1 3 3 0 0
Total 57 31 18 39 4 5 17 9 0 0
v0.1 2 2 3 1 1 6 4 0 5 0

S2 v0.2 3 4 4 6 0 0 1 0 5 0
v0.2.1 3 5 4 8 1 4 2 0 6 0
Total 8 11 11 15 2 10 7 0 16 0
v0.1 1 2 2 5 0 0 1 0 2 0

S3 v0.2 1 1 0 2 0 0 2 0 1 0
v1.0 3 4 1 6 0 2 5 0 2 1
Total 5 7 3 13 0 2 8 0 5 1

that tend to compose a co-occurrence: Feature Envy, Long Method,
Disperse Coupling, God Class, and Shotgun Surgery. Regarding the
most frequent types of code smells co-occurrence, we have some
interesting observations. The ranking of the top-5 co-occurrence of
code smells per system, from the most frequent to the less frequent
indicate that God Class–Long Method and Disperse Coupling–Long
Method, are the co-occurrences that most tend to co-occur together.

Table 8: Co-occurrences that most tend to co-occur

Co-occurrences
of systems
that co-occur Systems

God Class–Long Method 3 S1,S2,S3
Disperse Coupling–Long Method 3 S1,S2,S3
Feature Envy–Long Method 2 S1,S3
Disperse Coupling–Feature Envy 2 S1,S2
Feature Envy–God Class 2 S1,S3

Moreover, we also found code smells co-occurrences that are
the most detected in at least two systems, such as: Feature Envy–
Long Method in the S1 and S3 systems, Disperse Coupling–Feature
Envy in the S1 and S2 systems and Feature Envy–God Class in the
S1 and S3 systems, indicating a pattern that these co-occurrences
tend to co-occur. Table 8 shows the co-occurrences that most tend
to co-occur in the systems studied. These results confirm what
was found in previous work in the literature on code smells co-
occurrences [27, 29, 39, 55].

Finding 1: The most frequent co-occurrences of code smells
across projects areGodClass–LongMethod andDisperse Coupling–
Long Method.

Code smells co-occurrences tend to increase during soft-
ware evolution. By comparing the first and the last release of each
system, we can observe an increase in the number of code smells
co-occurrences in most of the analyzed systems. More precisely, for
the S1 system we observed an increase of five out of eight (62.5%)
co-occurrences: Feature Envy–LongMethod,Disperse Coupling–Long
Method, Intensive Coupling–Long Method, Feature Envy–God Class,
and Feature Envy–Refused Parent Bequest. In the case of S2 sys-
tem, we also observed an increase of (62.5%) in the following co-
occurrences: Feature Envy–Long Method, Disperse Coupling–Long
Method, Disperse Coupling–Feature Envy, God Class–Long Method

and Disperse Coupling–God Class. Finally, in S3 system, an increase
in 6 out of 8 (75%) in the following code smells co-occurrences
was observed: Feature Envy–Long Method, Disperse Coupling–Long
Method, Disperse Coupling–Feature, God Class–Long Method, God
Class–Shotgun Surgery, Feature Envy–God Class, and Feature Envy–
Shotgun Surgery.

These results suggest that co-occurrences tend to increase over
time. One of the factors that can explain this phenomenon is the
number of features in each release. The latest releases have more
features than the first. We have an understanding that developers
should also be concerned with the number of individual instances of
code smells like Long Method, God Class and Feature Envy because
these code smells tend to co-occur with some other code smell.
In Table 7, it is possible to notice that each of these code smells
are present in at least four co-occurrence relations. However, they
are necessary more empirical studies to verify the relationship
between the number of features and the number of code smells
co-occurrences.

Finding 2: Most co-occurrences increased over the systems
development.

4.2 The Impact of the Removal of Code Smells
Co-occurrences (RQ2)

We address RQ2 by evaluating the impact of the removal of code
smells co-occurrences on five internal quality attributes: cohesion,
inheritance, size, coupling, and complexity. We emphasize that the
removal of co-occurrence was preformed in practice through ap-
plied manual refactorings by developers familiar with the systems
(see Section 3.2). Table 9 presents the impact of removing code
smells co-occurrences for the internal quality attributes, consider-
ing the latest releases of the three target systems.

We put the quality attributes and their respective metrics. We
analyzed the quality of the three systems using the Understand tool
before the process of removing code smells co-occurrences and the
computed value for each metric can be seen in the Table 9.

We identified that after removing code smells co-occurrences,
cohesion decreased in the three systems studied by us in this work,
coupling and inheritance increased in the three systems, complexity
decreased significantly in two systems (S1 and S3) and increased

Are Code Smell Co-occurrences Harmful to Internal Quality
Attributes? A Mixed-Method Study SBES ’20, October 21–23, 2020, Natal, Brazil

Table 9: Impact of the removal of co-occurrences of code smells grouped by the system and internal quality attribute

Cohesion Complexity Inheritance Coupling SizeSystem LCOM2 ACC SCC EVG MaxNet DIT NOC IFANIN CBO LOC CLOC NIM CDL
3596 103 1120 867 111 172 34 138 551 7830 166 919 146S1 with co-occurrences Total 3596 2201 344 551 9061
3878 110 1223 247 116 186 35 151 536 8416 199 1004 163S1 without co-occurrences Total 3878 1696 372 536 9782

Results ↓7.75% ↓22.94% ↑ 8.13% ↑3.2% ↑7.95%
3300 101 881 177 74 111 15 119 332 7094 112 719 106S2 with co-occurrences Total 3300 1233 245 332 8031
3438 102 913 175 74 113 16 124 333 5623 109 748 112S2 without co-occurrences Total 3438 1264 253 333 6592

Results ↓4.1% ↑2.5% ↑3.2% ↑0.3% ↓17.91%
3634 86 770 102 62 101 12 109 313 5082 151 640 99S3 with co-occurrences Total 3634 1020 222 313 5972
3856 78 579 93 53 108 11 119 334 5447 126 696 104S3 without co-occurrences Total 3856 803 238 334 6373

Results ↓6.1% ↓21.27% ↑ 7.2% ↑ 9.9% ↑6.71%

in one system (S2). The size of the S1 and S3 systems has slightly
increased and the size of the S2 system has been reduced.

We identified that the cohesion of the S1 system worsened by
7.75% after removing of code smells co-occurrences, this can be
seen through the value of the LCOM2 metric that with code smells
co-occurrences was 3596 and after the process of removing co-
occurrences went to 3878. The higher the value of this metric, the
worse is the cohesion of a system [8]. On the other hand, the value
of the complexity metrics decreased after removing co-occurrences.
To evaluate the impact of removing code smells on attributes with
more than one metrics, we compared the sum of the metrics value
[46] before removing code smells and after removing code smells,
as shown in the Table 9. We can verify in the Table 9 that the sum
of the metrics of complexity attribute decreased from 2021 to 1696,
indicating a decrease of 22.94% of the total complexity value [8, 35].

In the S1 system, the inheritance and size attributes obtained
an increase of 8.13% and 7.95% respectively in the value of their
metrics. The coupling increased by 3.2%, it is expected that there
was a reduction in the percentage coupling [9]. A possible expla-
nation for the coupling to have increased, despite the removal of
co-occurrences, is the increase in the value of the inheritance met-
rics since it was previously found that the increase in inheritance
may mean an increase in the coupling of classes [25].

Te S2 system, was the only system studied in this work that
obtained a great decrease in its size after the removal of code smells
co-occurrences. As we can see in the Table 9 the size decreased
by 17.91%. The number of lines of code (LOC) decreased from
7094 to 5623, but the number of methods (NIM) and the number
of classes (CDL) increased. Although the complexity attribute did
not decrease in this system, there was a small increase of 2.5% in
complexity and also yielded the lowest reduction in the cohesion
and lower Coupling metrics and increased value in the attribute
inheritance. Finally, in the S3 system, we identified a decrease of
6.3% in the cohesion attribute, an increase in inheritance of 7.2%
and in coupling of 9.9%, indicating once again that the increase
in inheritance in the system may suggest an increase in coupling.
The size also increased by 6.71%. However, there was a significant
decrease in complexity by 21.27%.

The negative impact of removing code smells co-occurren
-ces. Removing co-occurrences from code smells had a negative
impact on internal quality attributes such as cohesion and coupling.
After removing these anomalies, we found that these attributes
worsened in all three systems studied in our work.

Finding 3: The removal of code smells co-occurrences did
not have a positive impact on attributes such as cohesion and
coupling.

The positive impact of removing code smells co-occurren
-ces. On the other hand, the removal of code smells co-occurrences
has managed to significantly reduce the complexity in S1 and S3 sys-
tems. Several work in the literature have already studied the impact
of complexity for OO systems, most of these studies associate com-
plexity with problems such as worsening software maintainability,
greater propensity for errors and quality reduction [4, 10, 35, 45].
In the S1 system, complexity has been reduced by 22.94% and in
the S3 system it has been reduced to 21.97%.

Finding 4: After removing the co-occurrences, the complex-
ity decreased 22.94% and 21.27% respectively in two systems
of the three target systems studied. Indicating that complex-
ity can is an attribute that decreases with the removal of
co-occurrences.

The data found in this research question suggest evidence that
the removal of code smells co-occurrences can mean a reduction in
the complexity attribute. However, more empirical studies need to
be carried out to gain a better understanding.

4.3 The Code Smells Co-occurrences most
Difficult to Remove (RQ3)

We address RQ3 by asking developers to answer a questionnaire
about refactoring activities. In this questionnaire, we asked the
developers to inform on a scale of 1 to 5 which were the code smells
co-occurrences most difficult to refactor, where 1 is the easiest and
5 the most difficult, if the developer had not refactored a certain
co-occurrence he checked the option “I did not refactor this code
smell co-occurrence”. In addition, we also asked developers to write

SBES ’20, October 21–23, 2020, Natal, Brazil Martins et al.

in a field the reasons for these choices so that we could have a better
understanding of developers’ perceptions.

We organize the data in a ranking, for that, we used the Borda
count technique [42]. The Borda count is a ranking technique de-
signed to obtain a consensus instead of a majority. We used this
technique as follows. If they have n candidates, the first in the rank-
ing has n points, the second n-1 points, the third one has n-2 points,
and so on. This technique was also used in a previous study that
ranked code smells more popular among developers [54]. Table 10
present the ranking of code smells co-occurrences that are more
difficult to refactor.

Table 10: Co-occurrences more difficult to refactor

Position Code smell co-occurrence Points
God Class–Long Method 611
Disperse Coupling–Long Method 61
Feature Envy–Long Method 572
Feature Envy–God Class 57

3 Disperse Coupling–Feature Envy 53
God Class–Shotgun Surgery 504
Feature Envy–Shotgun Surgery 50
Feature Envy–Refused Parent Bequest 495
Disperse Coupling–God Class 49

6 Intensive Coupling–Long Method 47

The developer’s perspective on code smell co-occurrence.
We observed that under the developer’s perspective that the co-
occurrences most difficult to refactor from the most frequent to the
less frequent: (1) God Class–Long Method and Disperse Coupling–
Long Method; (2) Feature Envy–Long Method and Feature Envy–God
Class; (3) Disperse Coupling–Feature Envy; and Intensive Coupling–
Long Method co-competition with a significant difference of points
in relation to the co-occurrences that are at the top.

Finding 5: God Class–Long Method and Disperse Coupling–
LongMethod co-occurrences were the most difficult to remove
from the developers’ point of view.

With this result we identified a potential problem involving
code smells co-occurrences. In the Section 4.1, we found that the
God Class–Long Method and Disperse Coupling–Long Method co-
occurrences were the most likely to co-occur. However, as shown
in the Table 7, these were also the most difficult co-occurrences to
refactor. This finding suggests that developers should take care not
to insert these co-occurrences in the source code.

Finding 6: Developers should be careful not to insert God
Class–Long Method and Disperse Coupling–Long Method co-
occurrences.

Additionally, the Feature Envy–Long Method and Feature Envy–
God Class co-occurrences should also receive special attention from
the developers as they are second in the Table 10 and in the Sec-
tion 4.1 they also occurred with a certain frequency since they were
in 2 of the 3 systems studied in this work. We were also able to get
some interesting explanations as to why developers have refactored
a certain code smells co-occurrence:

P1:“I always considered the smell easier to refactor in each co-occurrence and
the difficulty in refactoring that smell as being the difficulty in refactoring the
co-occurrence.”

P3: “I chose the difficulties based on the difficulty of each code smell involved.
So the cases that have God Class and Shotgun Surgery are the ones that have
the greatest difficulties and the easiest are those that have Feature envy, Long

method and Refused Parent Bequest.”

P4: “The fact that god class is the most complex due to the fact that we have to
create another class and have not refactored it yet, and the long method is the
easiest because we already had experience.”

P5:“Due to the fact that to correct the co-occurrence it was necessary to correct
the Feature Envy" code-smell, which did not require many changes.”

We found that developers had more difficulty and did not like
to remove code smells like God Class, Shotgun Surgery, Disperse
Coupling and Intensive Coupling from co-occurrences. According
to the developers, these smells “involve a lot of functions and vari-
ables," “require changes in more places in the code," and “require a lot
of operations to remove them." While the smells like Feature Envy,
Long Method and Refused Parent Bequest were easier to refactor
because, according to the developers, “refactorings are simpler and
more quickly" and “it was necessary to refactor one or a few methods."

These responses indicate that the developers did not consider
co-occurrence as a whole, but what were the code smells that were
part of that co-occurrence.

5 THREATS TO VALIDITY
This section discusses threats to validity of the study according to
the classification of Wohlin et al. [53].

Internal validity. An internal threat of this study is the low
number of systems analyzed. However, the systems used in this
study are closed-source systems, which are poorly analyzed in the
literature. Another issue identified is that the analyzed classes are
production entities, or that is, we do not consider the test entities
used to test the production classes when measuring internal quality
attributes. However, we consider that developers are more con-
cerned with classes that provide some features to the system and
not test classes.

Construct validity. Code smells were automatically identified
by the JSpIRIT and JDeodorant tools, reducing the chance of errors
in detection. Even so, the strategies implemented by these tools can
be a potential threat to validity. In this way, other detection tools
could use different strategies than the tools used in this study. Thus,
this could cause a variation in the set of identified code smells and
consequently affect the detection of co-occurrences of code smells.
There are several types of code smells relationships found in other
studies, such as coupled smells and colocated smells [54]. In our
study, we consider co-occurrences of smells to occur at the class
and method levels.

External validity. The results can only be used for object-
oriented systems written in Java. A limitation is the domain of
systems. From other domains it is possible to have different results.
Another problem that we have identified is that there are develop-
ers with little development experience or little knowledge of code
smells, refactoring or quality metrics. To mitigate this problem, we
conducted training with all developers.

Are Code Smell Co-occurrences Harmful to Internal Quality
Attributes? A Mixed-Method Study SBES ’20, October 21–23, 2020, Natal, Brazil

6 RELATEDWORK
Kaur [23] conducted a systematic literature review of such exist-

ing empirical studies that investigate the impact of code smells on
software quality attributes. The results of this study [23] indicate
that the impact of code smells on software quality is not uniform as
different code smells have the opposite effect on different software
quality attributes. Similar to the conclusions of the studies identified
in the systematic review, in our work, we also identified that the
removal of code smells co-occurrences also does not have a uniform
impact on internal quality attributes. de Paulo Sobrinho et al. [12]
and Lacerda et al. [26] perform a literature review on code smells.
Both papers [12, 26] find that code smells God Class, Feature Envy,
Long Method are the most studied in the context of co-occurrences
and that code smells such as Refused Parent Bequest and Shotgun
Surgery need more attention. Also, the results found in both studies
indicate that the presence of code smells in the source code may
report problems in maintainability and software design. However,
the authors point out that this is an area that still needs attention
that further empirical studies are needed on the impact of these
anomalies on the source code. In our research, we took into account
the Shotgun Surgery and Refused Parent Bequest code smells and
found that removing code smells co-occurrences may indicate a
decrease in the complexity attribute.

Abbes et al. [1] studies the interactions between code smells and
their effects. The authors concluded that when code smells appeared
isolated, they had no impact on maintainability, but when they
appeared interconnected, they brought a major maintenance effort.
Fernandes et al. [15] extends a large quantitative study about the
refactoring effect on internal quality attributes with new insights.
As a result of this study, the authors identified that most refactoring
types improved one ormore attributes, and re-refactoring affects the
internal quality attributes similarly to refactoring in general. In our
study, we identified that by removing code smells co-occurrences,
there is a reduction in complexity. Still, we did not see a positive
impact on other attributes such as cohesion and coupling.

Yamashita and Moonen [55] analyzes the impact of the inter-
Smell relations in the maintainability of four medium-sized indus-
trial systems written in Java. The authors detect significant rela-
tionships between Feature Envy, God Class and Long Method and
conclude that Inter-Smell relationships are associated with prob-
lems during maintenance activities. Palomba et al. [39] conducted
a large-scale empirical study aimed at quantifying the diffuseness
of the problem in terms of how frequently code smells occur to-
gether. As a result, the authors identify that 59% of smelly classes
are affected by more than one smell. In particular, six pairs of
smell types frequently co-occur Message Chains–Spaghetti Code,
Message Chains–Complex Class, Message Chains–Blob, Message
Chains–Refused Bequest, Long Method–Spaghetti Code and Long
Method–Feature Envy. In our study, we identified that the most
frequent code smells co-occurrences are: God Class-Long Method
and Disperse Coupling-Long Method. In these studies, we found
that the most frequent co-occurrences are different. Thus, more
studies are needed to analyze how these co-occurrences are inserted
in different types of systems.

The studies reinforce that developers must be alerted about the
impacts that code smells co-occurrences in the code so that these

relationships are refactored and removed in the initial stages of
implementation. However, we have not identified studies that in-
vestigate the impact of refactorings of code smell co-occurrences
on internal quality attributes.

7 CONCLUSION AND FUTUREWORK
Our study considered 7 types of code smells and their co-occurrences
in 3 Java OO closed-source systems, and 5 internal quality attributes
(cohesion, inheritance, size, coupling, and complexity). As the main
objective of our study: (i) we analyzed the co-occurrences that most
tend to co-occur in these systems; (ii) we investigated the impact
of removing these anomalies for internal quality attributes; and,
(iii) we identified which are the co-occurrences to be removed ac-
cording to the developers’ perspective. The process of removing
these co-occurrences of code smells took 3 months and happened at
different times for each system, a total of 183 commits were made
and 94 co-occurrences were removed.

The main findings of our study were: (i) God Class–Long Method
and Disperse Coupling–Long Method are the most frequent co-
occurrences in the three systems and also the most difficult co-
occurrences to refactor in developers’ perspective; (ii) co-occurrences
increase during the development of the system; (iii) the removal of
these anomalies has a negative impact on the cohesion and coupling
attributes; and (iv) the removal of code smells co-occurrences sug-
gests a significant decrease in the complexity of the systems. The
finding (iv) is interesting because several studies in the literature
point out the harms of high complexity for OO systems [10, 35, 45].
As future work, we want to: (i) analyze more closed-source systems
and also analyze open-source systems; (ii) reproduction of the study
with tools that detect other code smells; and, (iii) verify which are
the most harmful co-occurrences for the internal quality attributes.

ACKNOWLEDGMENTS
Thisworkwas partially funded byCNPq (434969/2018-4, 312149/2016-
6, 141285/2019-2), CAPES/Procad (175956), and FAPERJ (200773/2019,
010002285/2019).

REFERENCES
[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.

2011. An empirical study of the impact of two antipatterns, blob and spaghetti
code, on program comprehension. In 15th CSMR. IEEE, 181–190.

[2] Jehad Al Dallal. 2013. Object-oriented class maintainability prediction using
internal quality attributes. Inf. Softw. Technol. 55, 11 (2013), 2028–2048.

[3] Rafa E Al-Qutaish. 2010. Quality models in software engineering literature:
an analytical and comparative study. Journal of American Science 6, 3 (2010),
166–175.

[4] Mamdouh Alenezi and Khaled Almustafa. 2015. Empirical analysis of the com-
plexity evolution in open-source software systems. International Journal of
Hybrid Information Technology 8, 2 (2015), 257–266.

[5] Ajay Bandi, Byron J Williams, and Edward B Allen. 2013. Empirical evidence
of code decay: A systematic mapping study. In 2013 20th Working Conference on
Reverse Engineering (WCRE). IEEE, 341–350.

[6] James M Bieman and Byung-Kyoo Kang. 1995. Cohesion and reuse in an object-
oriented system. ACM SIGSOFT Software Engineering Notes 20, SI (1995), 259–262.

[7] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim, and
Alessandro Garcia. 2017. How does refactoring affect internal quality attributes?:
A multi-project study. In 31st SBES. ACM, 74–83.

[8] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object
oriented design. IEEE Trans. Softw. Eng. 20, 6 (1994), 476–493.

[9] Istehad Chowdhury and Mohammad Zulkernine. 2010. Can complexity, coupling,
and cohesion metrics be used as early indicators of vulnerabilities?. In Proceedings
of the 2010 ACM Symposium on Applied Computing. ACM, 1963–1969.

SBES ’20, October 21–23, 2020, Natal, Brazil Martins et al.

[10] David P Darcy, Chris F Kemerer, Sandra A Slaughter, and James E Tomayko. 2005.
The structural complexity of software an experimental test. IEEE Trans. Softw.
Eng. 31, 11 (2005), 982–995.

[11] Rafael de Mello, Anderson Uchôa, Roberto Oliveira, Willian Oizumi, Jairo Souza,
Kleyson Mendes, Daniel Oliveira, Baldoino Fonseca, and Alessandro Garcia. 2019.
Do Research and Practice of Code Smell Identification Walk Together? A Social
Representations Analysis. In 13th ESEM. 1–6.

[12] Elder Vicente de Paulo Sobrinho, Andrea De Lucia, and Marcelo de Almeida Maia.
2018. A systematic literature review on bad smells—5 W’s: which, when, what,
who, where. IEEE Trans. Softw. Eng. (2018).

[13] Giuseppe Destefanis, Steve Counsell, Giulio Concas, and Roberto Tonelli. 2014.
Software metrics in agile software: An empirical study. In International Conference
on Agile Software Development. Springer, 157–170.

[14] Robert Dyer, Hridesh Rajan, and Yuanfang Cai. 2012. An exploratory study of
the design impact of language features for aspect-oriented interfaces. In 11th
AOSD. ACM, 143–154.

[15] Eduardo Fernandes, Alexander Chávez, Alessandro Garcia, Isabella Ferreira,
Diego Cedrim, Leonardo Sousa, and Willian Oizumi. 2020. Refactoring Effect on
Internal Quality Attributes: What Haven’t They Told You Yet? Inf. Softw. Technol.
(2020), 106347.

[16] Eduardo Fernandes, Johnatan Oliveira, Gustavo Vale, Thanis Paiva, and Eduardo
Figueiredo. 2016. A review-based comparative study of bad smell detection tools.
In 20th EASE. ACM, 18.

[17] Eduardo Fernandes, Gustavo Vale, Leonardo Sousa, Eduardo Figueiredo, Alessan-
dro Garcia, and Jaejoon Lee. 2017. No Code Anomaly is an Island. In 16th ICSR.
Springer, 48–64.

[18] Francesca Arcelli Fontana, Vincenzo Ferme, and Marco Zanoni. 2015. Towards
assessing software architecture quality by exploiting code smell relations. In 2015
IEEE/ACM 2nd International Workshop on Software Architecture and Metrics. IEEE,
1–7.

[19] Francesca Arcelli Fontana, Valentina Lenarduzzi, Riccardo Roveda, and Davide
Taibi. 2019. Are architectural smells independent from code smells? An empirical
study. J. Syst. Softw. 154 (2019), 139–156.

[20] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[21] ISO. 2011. IEC 25010: 2011 systems and software engineering–systems and
software quality requirements and evaluation (square)–system and software
quality models. International Organization for Standardization 34 (2011), 2910.

[22] Fehmi Jaafar, Angela Lozano, Yann-Gaël Guéhéneuc, and KimMens. 2017. On the
analysis of co-occurrence of anti-patterns and clones. In 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE, 274–284.

[23] Amandeep Kaur. 2019. A Systematic Literature Review on Empirical Analysis of
the Relationship Between Code Smells and Software Quality Attributes. Archives
of Computational Methods in Engineering (2019), 1–30.

[24] Sharanpreet Kaur and Satwinder Singh. 2016. Spotting & eliminating type check-
ing code smells using eclipse plug-in: Jdeodorant. International Journal of Com-
puter Science and Communication Engineering 5, 1 (2016).

[25] V Krishnapriya and K Ramar. 2010. Exploring the difference between object
oriented class inheritance and interfaces using coupling measures. In 2010 Inter-
national Conference on Advances in Computer Engineering. IEEE, 207–211.

[26] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc.
2020. Code smells and refactoring: a tertiary systematic review of challenges and
observations. J. Syst. Softw. (2020), 110610.

[27] Michele Lanza and RaduMarinescu. 2007. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-oriented
systems. Springer Science & Business Media.

[28] Mark Lorenz and Jeff Kidd. 1994. Object-oriented software metrics: a practical
guide. Prentice-Hall, Inc.

[29] Angela Lozano, Kim Mens, and Jawira Portugal. 2015. Analyzing code evolution
to uncover relations. In 2nd PPAP. IEEE, 1–4.

[30] Isela Macia, Joshua Garcia, Daniel Popescu, Alessandro Garcia, Nenad Medvi-
dovic, and Arndt von Staa. 2012. Are automatically-detected code anomalies
relevant to architectural modularity?. In 11th AOSD. 167–178.

[31] Ruchika Malhotra and Anuradha Chug. 2016. An empirical study to assess the
effects of refactoring on software maintainability. In International Conference
on Advances in Computing, Communications and Informatics (ICACCI). IEEE,
110–117.

[32] Júlio Martins, Carla Ilane Moreira Bezerra, and Anderson Uchôa. 2019. Analyzing
the Impact of Inter-smell Relations on Software Maintainability: An Empirical
Study with Software Product Lines. In Proceedings of the XV Brazilian Symposium
on Information Systems. 1–8.

[33] Thomas J McCabe. 1976. A complexity measure. IEEE Trans. Softw. Eng. 4 (1976),
308–320.

[34] Sandro Morasca. 2009. A probability-based approach for measuring external
attributes of software artifacts. In 3rd ESEM. IEEE Computer Society, 44–55.

[35] Iulian Neamtiu, Guowu Xie, and Jianbo Chen. 2013. Towards a better under-
standing of software evolution: an empirical study on open-source software. J.
Softw.: Evol. Process 25, 3 (2013), 193–218.

[36] Willian Oizumi, Alessandro Garcia, Leonardo da Silva Sousa, Bruno Cafeo, and
Yixue Zhao. 2016. Code anomalies flock together: Exploring code anomaly
agglomerations for locating design problems. In 38th ICSE. IEEE, 440–451.

[37] Willian Nalepa Oizumi, Alessandro Fabricio Garcia, Thelma Elita Colanzi,
Manuele Ferreira, and Arndt von Staa. 2014. When code-anomaly agglomera-
tions represent architectural problems? An exploratory study. In 28th SBES. IEEE,
91–100.

[38] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the Intents: An In-depth
Empirical Study on Software Refactoring in Modern Code Review. In 17th MSR.

[39] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. A large-scale empirical study on the lifecycle
of code smell co-occurrences. Inf. Softw. Technol. 99 (2018), 1–10.

[40] Fabio Palomba, Rocco Oliveto, and Andrea De Lucia. 2017. Investigating code
smell co-occurrences using association rule learning: A replicated study. In 2017
IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation
(MaLTeSQuE). IEEE, 8–13.

[41] Błażej Pietrzak and Bartosz Walter. 2006. Leveraging code smell detection with
inter-smell relations. Extreme Programming and Agile Processes in Software
Engineering (2006), 75–84.

[42] Benjamin Reilly. 2002. Social choice in the south seas: Electoral innovation and
the borda count in the pacific island countries. International Political Science
Review 23, 4 (2002), 355–372.

[43] José Amancio M Santos, João B Rocha-Junior, Luciana Carla Lins Prates,
Rogeres Santos do Nascimento, Mydiã Falcão Freitas, and Manoel Gomes de
Mendonça. 2018. A systematic review on the code smell effect. J. Syst. Softw. 144
(2018), 450–477.

[44] Dag IK Sjøberg, Aiko Yamashita, Bente CD Anda, Audris Mockus, and Tore Dybå.
2012. Quantifying the effect of code smells on maintenance effort. IEEE Trans.
Softw. Eng. 39, 8 (2012), 1144–1156.

[45] Ramanath Subramanyam and Mayuram S. Krishnan. 2003. Empirical analysis
of ck metrics for object-oriented design complexity: Implications for software
defects. IEEE Trans. Softw. Eng. 29, 4 (2003), 297–310.

[46] Sandhya Tarwani and Anuradha Chug. 2016. Sequencing of refactoring tech-
niques by Greedy algorithm for maximizing maintainability. In Proceedings of
the International Conference on Advances in Computing, Communications and
Informatics (ICACCI). IEEE, 1397–1403.

[47] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.
Ten years of JDeodorant: Lessons learned from the hunt for smells. In 25th SANER.
IEEE, 4–14.

[48] Anderson Uchôa, Eduardo Fernandes, Ana Carla Bibiano, and Alessandro Garcia.
2017. Do CouplingMetrics Help Characterize Critical Components in Component-
based SPL? An Empirical Study. In Proceedings of the 5th Workshop on Software
Visualization, Evolution and Maintenance (VEM). 36–43.

[49] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenílio, Rafael Lima,
Alessandro Garcia, and Carla Bezerra. 2020. How Does Modern Code Review
Impact Software Design Degradation? An In-depth Empirical Study. In 36th
ICSME. 1 – 12.

[50] Santiago Vidal, Hernan Vazquez, J Andres Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. 2015. JSpIRIT: a flexible tool for the analysis of code
smells. In 34th SCCC. IEEE, 1–6.

[51] Santiago A Vidal, Claudia Marcos, and J Andrés Díaz-Pace. 2016. An approach
to prioritize code smells for refactoring. Automated Software Engineering 23, 3
(2016), 501–532.

[52] Bartosz Walter, Francesca Arcelli Fontana, and Vincenzo Ferme. 2018. Code
smells and their collocations: A large-scale experiment on open-source systems.
J. Syst. Softw. 144 (2018), 1–21.

[53] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[54] Aiko Yamashita and Leon Moonen. 2013. Do developers care about code smells?
An exploratory survey. In 20th WCRE. IEEE, 242–251.

[55] Aiko Yamashita and Leon Moonen. 2013. Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In 35th ICSE. IEEE,
682–691.

[56] Aiko Yamashita, Marco Zanoni, Francesca Arcelli Fontana, and Bartosz Walter.
2015. Inter-smell relations in industrial and open source systems: A replication
and comparative analysis. In 31st ICSME. IEEE, 121–130.

	Abstract
	1 Introduction
	2 Background
	2.1 Code Smells Detection
	2.2 Code Smell Co-occurrences
	2.3 Internal Quality Attributes Measures

	3 Study Settings
	3.1 Goal and Research Questions
	3.2 Study Steps
	3.3 Experimental Procedures

	4 Results and Discussion
	4.1 The Frequency of Code Smells Co-occurrences (RQ1)
	4.2 The Impact of the Removal of Code Smells Co-occurrences (RQ2)
	4.3 The Code Smells Co-occurrences most Difficult to Remove (RQ3)

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

