
On the Alternatives for Composing Batch Refactoring

Eduardo Fernandes, Anderson Uchôa, Ana Carla Bibiano, Alessandro Garcia
OPUS Research Group, Informatics Department (DI), Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

Rio de Janeiro, Brazil
Email: {emfernandes, auchoa, abibiano, afgarcia}@inf.puc-rio.br

Abstract—Code refactoring is often performed for improving
code structures through code transformations. Many transfor-
mations, e.g., extracting or moving a method, are applied for
at least partially removing code smells. Each code smell is a
symptom of a poor code structure that makes hard to read and
change the program. Developers often compose two or more
interrelated transformations in conjunction (batch refactoring)
rather than applying a single transformation. For instance,
developers often compose method extractions with method
motions to better organize the features realized by classes. We
have recently observed cases of batch refactoring performed
along with code review in open source projects. We then noticed
that composing batches capable of fully removing code smells
is quite challenging. Especially, it requires carefully discussing
on how two or more transformations complement one another
and what to expect from the batch effect on code smell. This
position aims to reason about multiple alternatives to support
developers on composing their batches. These alternatives
should make it easier to compose batches that remove code
smells. For this purpose, we exemplify the role of semi-
automated tools in gradually recommending transformations,
thereby guiding the batch composition in each alternative.

Keywords-batch refactoring; code smell; code review.

I. INTRODUCTION

Code refactoring is adopted by major companies aimed
to improve code structures via code transformations [1] [2].
Many transformations are applied for at least partially re-
moving code smells [3]. Code smells are symptoms of
poor code structures that hinder reading and modifying
the code [4]. Code smells may represent real maintenance
threats but only 10% of single transformations can fully
remove code smells [3]. Perhaps for this reason, developers
often compose two or more interrelated transformations
in conjunction, i.e., a batch refactoring (or batch) [2].
Notably, about 40-60% of code transformations are applied
in batches [2]. An example of a batch is composing method
extractions with method motions aimed to move an “envi-
ous” feature across classes [4].

Batch refactoring is often performed along with code
reviews [5]. Shortly, code review is a practice aimed at
detecting and removing problems in parts of a software
project [6]. Through collaboration, developers discuss in
rounds the refinements needed for removing problems, e.g.,
code smell instances [7]. After approval, the reviewed code
is merged into the project’s main source code [6]. We have
found explicit mentions to poor code structures, especially

code smells, along with code review discussions in the
Google’s Gerrit Code Review platform. In publicly available
cases, reviewers suggest interrelated transformations (e.g.,
Extract Class, Move Method, and Inline Method composed)
for removing a particular poor code structure [5]. Along
discussions, developers debate about the suggested trans-
formations. For instance, developers have to decide: apply,
ignore, postpone, or ask for another suggestion? After rounds
of discussions, a batch is finally composed.

The current batch refactoring support is scarce [3]. Tools
like JDeodorant [8] recommend isolated code transforma-
tions, sometimes unrelated, one at a time. Thus, they make
hard to reason about batches that fully remove smells. Only
a few tools support the batch composition and they are quite
limited [3]. FaultBuster recommends a full set of interrelated
transformations [9]. However, the interaction with the tool
is limited to accept or ignore the recommended batch.
Refactoring Navigator [10] recommends transformations in
rounds towards composing a batch. However, it supports
major architectural refactoring rather than minor code trans-
formations that are equally frequent in practice [3] [11].

This position paper aims to shed light on alternatives for
composing batches in code review, because this context has
many publicly available data for analysis. Alternative 1: we
rethink the developer interactions with semi-automated tools
in order to enable a customized batch composition. It works
as an early code review aimed at shortening code review
discussions. Alternative 2: we propose to support each
reviewer in composing a particular batch so that all reviewers
can decide the best one to apply. Alternative 3: we exploit
the existing collaboration among developers in code reviews
to promote discussions about the batch effect on code smells,
guided by tool-recommended code transformations.

II. MOTIVATING EXAMPLE

Major and medium-sized companies adopt code review
for coping with design and code problems [6] [12] [13],
code smells included [5]. Two or more reviewers reason
together about the quality of a program developed by another
developer also known as the code owner [6]. The reviewers
then forward all identified problems to the code owner for
correction. Ideally, both code owner and reviewers engage
in discussions about strategies for removing the detected
problems [14]. Figure 1 illustrates a batch composed along

with code review in the Couchbase project (Change 60201
available online1 at Gerrit). This example shows how de-
velopers interact towards composing a batch for improving
code structures along two consecutive commits (i and i+1).
Here [5] is another example.

Key

Commit i Commit i+1 Commit history

Method

Class

Poor code
structure

AsyncLookupInBuilder AsyncLookupInBuilder

Move
Method1

HelperClass

Deleted
method

Observable<> call()

MultiResult<> call()
Too complex

Observable<> call()

MultiResult<> call()
Too complex

MultiResult<> call()

MultiResult<> call()

Extract
Method

AsyncMutateInBuilder AsyncMutateInBuilder ArbitraryClassA
Func2<> = new

Func2<>()

ArbitraryClassB
Func3<> = new

Func3<>()

Func2<> = new
Func2<>()

Func3<> = new
Func3<>()

Too complex

Move
Method2

Move
Method3

Too complex

Func2<> = new
Func2<>()

Func3<> = new
Func3<>()

Inner Method

Removed
poor code
structure

Figure 1. A Real Batch Example

Let us consider the AsyncLookupInBuilder class. In Com-
mit i, this class has an inner method named MultiResult<>
call(), which is located into the Observable<> call()
method. The inner method was found by Reviewer A as too
complex to read and modify. For this reason, Reviewer A
has recommended to move such method to a helper class
(via the Move Method transformation), as illustrated in the
quote below and extracted from Gerrit review comments.
However, in Commit i+1, Reviewer B decided to postpone
the recommendation and, instead, he extracted the inner
method out of Observable<> call() in the same class.

That is a heavy callback – can we move that into a helper class?
– Reviewer A recommends transformation

I’ll extract it in its own constant, we can see later if it needs to
be extracted in another class – Reviewer B replies

Additionally in Commit i, let us consider the Async-
MutateInBuilder class. This class was implicitly consid-
ered as too complex to read and modify by Reviewer A.
That is because of the methods encapsulated by this class,
i.e. Func2<> = new Func2<>() and Func2<> = new
Func2<>(). From the reviewer’s perspective, each method
should be moved to its own class. Thus, Reviewer A
recommended the application of two transformations: Move
Method2 and Move Method3. In this particular case, Re-
viewer B accepted both recommended transformations,
which were performed in Commit i+ 1. These discussions
among reviewers can be confirmed through the quotes below.

I wonder if it makes it cleaner if those options down here are
moved into separated classes each? – Reviewer A recommends

Yeah, let’s clean that up in another changeset if it becomes a
problem – Reviewer B accepts recommendation

By the end of the code review discussions, the developers
have composed and applied the batch b = {Extract Method,
Move Method2, Move Method3}.

1http://review.couchbase.org/#/c/60201/

III. CHALLENGES OF COMPOSING BATCHES

Challenge 1: Handling with Complex Batches. Batches
may be complex to apply: 18% occur across project versions,
12% are composed of varied transformation types, and 50%
have at least three transformations [3]. We assume that
developer collaboration [14] is essential to compose batches,
especially along with code review. Certain developers tend
to concentrate the familiarity with specific parts of the code
to remove smells [7]. Thus, our hypothesis is that knowledge
exchange among many developers is mandatory to compose
batches capable of (fully) removing smells. Unfortunately,
the current support to batch refactoring [9] [10] limitedly
supports such a knowledge exchange.

Challenge 2: Unknown Effect of Batches on Code
Smells. Each single transformation is rarely capable to fully
remove smells [3] [15]. Instead, it tends to either introduce
(33%) or not fully remove (57%) smells. Especially along
with code review, only a few developers may be unaware of
the effect of transformations on the code structure. Although
batches are frequent in practice [3], we know little about
the batch effect on code smells. Such a limited knowledge
may drastically affect the batch composition, especially to
recommend transformations. For instance, one could wonder
if the batch composed in Section II is a proper solution in
that context. For instance, does the application order of trans-
formations preserve the batch effect? We hypothesize that
knowledge exchange could promote discussions on the code
structure and how batches affect smells. A recommender that
justifies the effect by isolated transformation could enhance
existing batch composition tools [9] [10].

Challenge 3: Optimizing Batches is Tricky. Studies
like [10] optimize batches by reducing certain attributes
of batches, e.g., the number of code transformations into
the batch. These studies aim to make batches shorter and
easier to apply. A major threat to the existing optimization
techniques is: they neglect the batch effect on code smells.
Thus, our hypothesis is that current techniques may harm
rather than improve code structures. “What attribute should
we prioritize while optimizing batches?” and “Is there a
trade-off between supporting the developer’s motivation with
refactoring and improving code structures via batches?” are
questions that worth addressing via tooling support.

IV. ALTERNATIVES FOR THE BATCH COMPOSITION

Alternative 1: Developer vs. Tool (Early Code Review).
Problem – Developers may spent too much effort with
code review [6]. Some reviews just end up in blocking
the reviewed code from being merged into the projects’
main code [12]. Thus, reducing the code review effort while
increasing effectiveness is desired. Alternative 1 aims to
anticipate the smell detection and correction with the support
of a semi-automated tool. The goal is reducing the code
review effort in detecting and removing smells. An ideal tool
should recommend transformations that gradually compose

a batch. Alternative 1 acts during the code programming
and, thus, the tooling support should constantly monitor
code changes – e.g., via integrated development environ-
ment (IDE). Similar approach is successfully exploited by
tools like [16] with other purposes than batch refactoring.
Differently from existing batch composition tools [9] [10],
the desired tool systematically promotes two key practices
of code review [6] [14]: (1) the constant recommendation of
code transformations and (2) the frequent discussion among
developers about the recommended transformations.

Example – Figure 2(a) illustrates Alternative 1. The rec-
ommender constantly monitors smells during programming.
In t1, it was found a Large Class smell [4] instance affecting
class C1. The smell detection triggered the batch recom-
mendation in successive interactions with the developer (i1,
i3, and i5). The developer accepted (i2) and applied (t2)
a recommended Extract Class (via i2), but he asked for a
transformation other than Move Method recommended by
i3 (via i4). He also accepted (in i6) and applied (in t3)
Move Method as recommended by i5. The resulting batch
is b1 = {Extract Class, Move Method} that fully removes
the Large Class code smell type.

Open Questions – What types of interaction (e.g., accept,
reject, postpone) should be supported by recommendation?
Studies like [10] could be a starting point for discussion.
What is the best time to recommend code transformations?
At each file save or before closing the software project?
A previous work [16] guides the proposition of interactive
tools aimed to avoid problems like information overload.
However, practices for promoting interactions of developers
are missing. How to approach developers about smells
affecting their produced code? We could try to capture
symptoms [13] of bad structural quality (e.g., smells) are
valued in a project. For instance, we could reveal what
kind of symptoms have been refactored out in previous
versions of the project by using the association strategy
defined in [11]. Then, we prioritize approaching developers
with respect to those symptoms.

Alternative 2: Reviewer vs. Tool in Code Review.
Problem – Code reviewers may have varied opinions on a
given code structure. These opinions emerge from different
knowledge degrees that developers have on the code, espe-
cially in terms of features realized by code element (e.g.,
a method or a class). Thus, each reviewer may compose
a particular batch aimed at fully removing a code smell.
As an example, the existing techniques for optimizing a
batch mostly neglect the effect that different transformations
orders, and even different batches, have on code smells.
In this case, these techniques may not provide the best
solution to developers aimed at improving code structures.
Alternative 2 emerges with the purpose of letting each code
reviewer to compose his batch, so that all developers can
discuss the batch instance that best fits their needs.

Example – Figure 2(b) illustrates Alternative 2. The batch

recommender detects code smells in the reviewed code. In
t1, the recommender found a Feature Envy smell instance
affecting method M1. Feature Envy is (part of) a method
that frequently uses features provided by other classes rather
than the class that hosts the method itself [4]. The smell
detection triggered the batch recommendation in successive
interactions with the reviewer (i1, i3, and i5). The developer
accepted the Extract Method transformation recommended
by i1 (via i2). He has also accepted Inline Method as
recommended by i3 (via i4), but he rejected Rename Method
recommended by i5 (via i6). Finally, the reviewer forwarded
the batch to others in t2. The resulting batch is b2 = {Extract
Method, Inline Method} that fully removes Feature Envy.

Open Questions – How to measure the batch effect on
code smells in such a way that developers are convinced
to apply it? Strategies are desired to balance the develop-
ers’ motivations with refactoring and the effect on code
smells [3], which we plan to do in a recent thesis pro-
posal [5]. How to manage conflicts among reviewers that
propose different batches? In this case, the semi-automated
tool could incorporate a voting system, similar to the one
applied by Gerrit, so that developers can easily decide which
batch should be applied at the end. Interactive search-based
techniques like [10] can help to address both questions.

Alternative 3: Developer & Reviewers vs. Tool in Code
Review. Problem – Many heads are sometimes better than
a single one. In some code review tasks, e.g., detecting and
correcting certain code smells, developers are more efficient
when working collaboratively [7] [14]. Unfortunately, the
current tools aimed to support the batch composition do
not promote a collaborative work. Code review platforms
like Gerrit allow developers and reviewers to discuss col-
laboratively. However, the collaborative batch composition
has been unsupported by semi-automated tools integrated
to these platforms. The unguided batch composition can
increase the number of code review rounds, but also hinder
the discussion about the batch effect on code smells. With
Alternative 3, we explore the potential to enhance the batch
composition through developer collaboration.

Example – Figure 2(c) illustrates Alternative 3 similarly
to Alternative 2. In t1, the recommender found Feature Envy
affecting method M1. The smell detection triggered the batch
recommendation in successive interactions with all develop-
ers (i1, i4, and i7). Although Reviewer 1 accepted the Extract
Method recommended by i1 (via i2), Reviewer 2 asked
for another recommendation (via i3). This disagreement
resulted in discarding Extract Method in t2. After that, it was
recommended Move Method in i4, which Reviewers 1 and 2
accepted (via i5 and i6, respectively). It was recommended
Rename Method in i7 and both reviewers accepted it (via i8
and i9). The resulting batch b3 = {Move Method, Rename
Method} was applied to fully remove Feature Envy.

Open Question – How to cope with many divergent
reviewers’ opinions about batches? Strategies for guiding

(a) Alternative 1 (b) Alternative 2 (c) Alternative 3

Figure 2. Some Alternatives for Composing Batches

the comparison of batches, especially in terms of their effect
on smells, are desired. We highlight that b3, which was com-
posed through Alternative 3, differs a lot from b2, composed
via Alternative 2. In spite of that, both batches fully removed
the same Feature Envy instance affecting M1. We present
this scenario on purpose to show how developers working
alone and collaboratively may compose different batches.
We then reinforce the need for guiding batch composition
in many ways: from the isolated batch composition to the
choice of the batch best fitting developers’ motivations.

V. FINAL REMARKS

This position paper illustrated three alternatives for com-
posing batches aimed to remove code smells, especially in
code review. We rely on our experience [5] with mining code
review discussions available at Gerrit, besides the current
knowledge on batches [1] [2] [3] for justifying the need for
supporting batch refactoring in practice. We also provide
insights on how to leverage the current batch refactoring
support [9] [10]. We highlight that the exploited alternatives
could be refined and adapted to remove other problems than
code smells, such as design degradation [13].

ACKNOWLEDGMENT

We thank CNPq (grants 434969/2018-4, 312149/2016-6),
CAPES (grant 175956), and FAPERJ (grant 22520-7/2016).

REFERENCES

[1] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical
study of refactoring: Challenges and benefits at Microsoft,”
IEEE Trans. Softw. Eng., vol. 40, no. 7, pp. 633–649, 2014.

[2] E. Murphy-Hill, C. Parnin, and A. Black, “How we refactor,
and how we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1,
pp. 5–18, 2012.

[3] D. Cedrim, “Understanding and improving batch refactoring
in software systems,” Ph.D. dissertation, Informatics Depart-
ment, PUC-Rio, Brazil, 2018.

[4] M. Fowler, Refactoring: Improving the Design of Existing
Code, 2nd ed. Addison-Wesley Professional, 2018.

[5] E. Fernandes, “Stuck in the middle: Removing obstacles to
new program features through batch refactoring,” in 40th
ICSE: Doctoral Symposium, 2019, pp. 1–4.

[6] A. Bacchelli and C. Bird, “Expectations, outcomes, and
challenges of modern code review,” in 35th ICSE, 2013, pp.
712–721.

[7] R. Oliveira, L. Sousa, R. de Mello, N. Valentim, A. Lopes,
T. Conte, A. Garcia, E. Oliveira, and C. Lucena, “Collabo-
rative identification of code smells: A multi-case study,” in
39th ICSE: SEIP Track, 2017, pp. 33–42.

[8] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “Ten years
of JDeodorant: Lessons learned from the hunt for smells,” in
25th SANER, 2018, pp. 4–14.

[9] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy,
“FaultBuster: An automatic code smell refactoring toolset,”
in 15th SCAM, 2015, pp. 253–258.

[10] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao,
“Interactive and guided architectural refactoring with search-
based recommendation,” in 24th FSE, 2016, pp. 535–546.

[11] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa,
R. de Mello, B. Fonseca, and A. Chávez, “Understanding the
impact of refactoring on smells: A longitudinal study of 23
software projects,” in 11th FSE, 2017, pp. 465–475.

[12] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and A. Bac-
chelli, “Modern code review: A case study at Google,” in 40th
ICSE: SEIP Track, 2018, pp. 181–190.

[13] L. Sousa, A. Oliveira, W. Oizumi, S. Barbosa, A. Garcia,
J. Lee, M. Kalinowski, R. de Mello, B. Fonseca, R. Oliveira,
and C. Lucena, “Identifying design problems in the source
code: A grounded theory,” in 40th ICSE, 2018, pp. 921–931.

[14] F. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto,
“An empirical study of design discussions in code review,” in
12th ESEM, 2018, pp. 11:1–11:10.

[15] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, and A. Gar-
cia, “How does refactoring affect internal quality attributes?
A multi-project study,” in 31st SBES, 2017, pp. 74–83.

[16] E. Murphy-Hill and A. P. Black, “An interactive ambient
visualization for code smells,” in 5th SOFTVIS, 2010, pp.
5–14.

