
Revealing the Social Aspects of Design Decay
A Retrospective Study of Pull Requests

Caio Barbosa, Anderson
Uchôa, Daniel Coutinho
PUC-Rio, Rio de Janeiro, Brazil

{csilva,auchoa,dcoutinho}@inf.puc-rio.br

Filipe Falcão, Hyago Brito,
Guilherme Amaral
UFAL, Alagoas, Brazil

{filipebatista,hpb,gvma}@ic.ufal.br

Vinicius Soares, Alessandro
Garcia

PUC-Rio, Rio de Janeiro, Brazil
{vsoares,afgarcia}@inf.puc-rio.br

Baldoino Fonseca, Marcio
Ribeiro

UFAL, Alagoas, Brazil
{baldoino,marcio}@ic.ufal.br

Leonardo Sousa
Carnegie Mellon University, California,

USA
leo.sousa@sv.cmu.edu

ABSTRACT
The pull-based development model is widely used in source-code
environments like GitHub. In this model, developers actively com-
municate and share their knowledge or opinions through the ex-
change of comments. Their goal is to improve the change under
development, including its positive impact on design structure. In
this context, two central social aspects may contribute to combating
or adversely amplifying design decay. First, design decay may be
avoided, reduced or accelerated depending whether the communi-
cation dynamics among developers – who play specific roles – is
fluent and consistent along a change. Second, the discussion content
itself may be decisive to either improve or deteriorate the struc-
tural design of a system. Unfortunately, there is no study on the
role that key social aspects play on avoiding or amplifying design
decay. Previous work either investigates technical aspects of design
decay or confirms the high frequency of design discussions in pull-
based software development. This paper reports a retrospective
study aimed at understanding the role of communication dynamics
and discussion content on design decay. We focused our analysis
on 11 social metrics related to these two aspects as well as 4 con-
trol technical metrics typically used as indicators of design decay.
We analyzed more than 11k pull request discussions mined from
five large open-source software systems. Our findings reveal that
many social metrics can be used to discriminate between design
impactful and unimpactful pull requests. Second, various factors
of communication dynamics are related to design decay. However,
temporal factors of communication dynamics outperformed the
participant roles’ factors as indicators of design decay. Finally, we
noticed certain social metrics tend to be indicators of design decay
when analyzing both aspects together.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBES ’20, October 21–23, 2020, Natal, Brazil
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8753-8/20/09. . . $15.00
https://doi.org/10.1145/3422392.3422443

CCS CONCEPTS
• Software and its engineering → Software evolution; Col-
laboration in software development.

KEYWORDS
pull request, design decay, social aspects, social metrics
ACM Reference Format:
Caio Barbosa, Anderson Uchôa, Daniel Coutinho, Filipe Falcão, Hyago Brito,
Guilherme Amaral, Vinicius Soares, Alessandro Garcia, Baldoino Fonseca,
Marcio Ribeiro, and Leonardo Sousa. 2020. Revealing the Social Aspects of
Design Decay: A Retrospective Study of Pull Requests. In 34th Brazilian
Symposium on Software Engineering (SBES ’20), October 21–23, 2020, Natal,
Brazil. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3422392.
3422443

1 INTRODUCTION
Open-source environments, such as GitHub, promote social coding
activities. These social activities consist of developers continually
communicating and sharing their knowledge along a code change
until it is submitted as a pull request [14, 15]. This is known as
the pull-based development model [7]. This model allows devel-
opers, who play different roles, to submit, review, comment and
discuss code contributions to a software project [39]. The pull-based
development model is widely used by open-source communities.

One of the goals of pull-based developmentmodel is to encourage
the improvement of the change under development, including its
beneficial impact on the design structure. In fact, recent studies
consistently report discussions about design structure are frequent
in this development model [6, 28, 51]. However, social activities
in pull-based development may contribute to avoiding, reducing
or accelerating design decay. Design decay is a phenomenon in
which developers progressively introduce code with poor design
structures into a system [13, 40].

Two social aspects are central to open-source coding environ-
ments: communication dynamics and discussion content (or com-
munication content) [3, 47]. The former determines how the com-
munication flows among developers, who also play specific roles
along the change under development. The latter determines charac-
teristics of the contents of comments exchange among developers.
These two social aspects may be related to design quality for various
reasons, such as two examples described as follows. First, design
decay may be avoided, reduced or accelerated depending whether

https://doi.org/10.1145/3422392.3422443
https://doi.org/10.1145/3422392.3422443
https://doi.org/10.1145/3422392.3422443

SBES ’20, October 21–23, 2020, Natal, Brazil Caio Barbosa et al.

the communication dynamics of developers with specific roles is
fluent and consistent along a change. Second, the characteristics
of content of comments can determine the quality of the discus-
sion, and therefore be decisive to either improve or deteriorate the
structural design of a system.

Unfortunately, the relationship between these key social aspects
and design decay have not been studied so far. Prior works either
investigate technical aspects of design decay [11, 18, 27] or confirms
the high frequency of design discussions in pull-based software
development [34, 44]. Studies of social aspects focus on investigat-
ing their relations with post-release defects [3, 12, 17], pull request
acceptance [4, 35], and software vulnerabilities [24]. Despite this
vast body of knowledge, no study has performed a retrospective
investigation on the relationship between key social aspects in pull-
based development and design decay. Hence, it is unclear if social
aspects, such as communication dynamics and discussion contents,
have a positive or negative relationship with design decay.

This paper reports a retrospective study aimed at understanding
the role of communication dynamics and discussion content on
design decay. We focused our analysis on 11 social metrics related
to these two aspects as well as 4 control technical metrics typically
used as indicators of design decay. We analyzed more than 11k
pull request discussions mined from five large open-source systems.
Our findings reveal that many social metrics can be used to dis-
criminate between design impactful and unimpactful pull requests.
Second, various factors of communication dynamics are related
to design decay. However, temporal factors of communication dy-
namics outperformed the participant roles’ factors as indicators of
design decay. Finally, we noticed certain social metrics tend to be
indicators of design decay when analyzing both aspects together.

Section 2 provides background information and related work.
Section 3 presents our motivating example. Section 4 describes
our study settings. Section 5 presents the study results. Section 6
discusses threats to validity. Finally, Section 7 concludes the paper
and suggests future work.

2 BACKGROUND AND RELATEDWORK
2.1 Pull Request Discussion and Social Aspects
Pull requests contributions are increasing on open-source environ-
ments, such as GitHub. Many open-source projects have guidelines
to ensure the use of pull requests for this task [14, 15]. The pull
request mechanism is basically started by a developer who sub-
mits his code contributions to a repository describing his changes,
e.g., new features, bug fixes, improvements. Next, the changes are
scrutinized by code reviewers of the organization until they are
merged or abandoned. In parallel, both contributors and reviewers
can interact through different discussions [39]: (i) discussions on
the pull request itself, (ii) discussions on a specific line within the
pull request, and (iii) discussions on a specific commit within the
pull request. Moreover, these discussions may be related or not to
the complexity and impact of the changes submitted.

These discussions are not trivial since it may involve different so-
cial aspects that capture communication activity among developers
and measures the impact of interpersonal relations [47]. Examples
of social aspects are communication dynamics (or discussion dynam-
ics) and discussion content. Communication dynamics represent the

role of participants involved in a discussion or temporal aspects of
the messages. For instance, a discussion that involves developers
with different roles (e.g., members, contributors, or newcomers).
On the other hand, the discussion content represents the interac-
tion of developers during the exchange of messages and obtained
information about the content of each message. For instance, the
presence of code snippets, and the number of words per comment.

2.2 Design Decay and its Symptoms
Software design results from a series of decisions made during
software development [41, 42]. However, along with software de-
velopment, a software design may decay due to the progressive
introduction of poor structures into the system, i.e., decay symp-
toms [13, 40, 45]. Such design decay is caused by a successive in-
crease in the density of symptoms along with software evolution.

Aimed at minimizing and removing decay symptoms, develop-
ers need to identify and to refactor source code locations impacted
by design decay. Previous studies [25, 40, 49] have identified five
categories of symptoms upon which developers often rely to iden-
tify structural decay. Such studies observed that developers tend
to combine multiples decay symptoms by considering dimensions
such as density, and diversity to determine if there is code decay.

In this work, we focus on two categories of symptoms: low-level
and high-level structural smells [38]. Low-level structural smells are
indicators of fine-grained structural decay; their scope is generally
limited to methods and code blocks [38]. For instance, the Long
Method smell. High-level structural smells are symptoms that may
indicate structural decay impacting on object-oriented character-
istics such as abstraction, encapsulation, modularity, and hierar-
chy [21, 38]. An example of high-level structural smells that may
be used for finding design decay is Insufficient Modularization [38].
This symptom occurs in classes that are large and complex, possibly
due to the accumulation of responsibilities. Symptoms of such cate-
gories can be automatically detected using a state-of-the-practice
tool called DesigniteJava [36].

2.3 Related Work
Social aspects in code review. There are multiple studies about
the influence of social aspects during code review [23, 24, 35, 45].
For instance, Ruangwan et. al. [35] investigated how many review-
ers did not respond to a review invitation. The authors found that
the more reviewers were invited to a patch, the more likely it was to
receive a response. Nevertheless, Meneely et. al. [24] attempted to
investigate Linus’ law to identify if it applies to security vulnerabil-
ities empirically. In this study, the authors concluded that code files
reviewed by more reviewers are more likely to be vulnerable. While
those works focus on analysing aspects surrounding code review
tasks, our study aims at investigating the social aspects occurring
in discussions that are not directly related to source-code.

Social aspects in open-source environments. Previous stud-
ies [43, 50] have investigated different social aspects in open-source
environments, such as GitHub. Yu et. al. [50] not only identified
social patterns among developers by mining the follow-networks,
but also found that those repositories provide transparent work
environments for developers, promoting innovation, knowledge
sharing, and community building. Additionally, Tsay et. al. [43]

Revealing the Social Aspects of Design Decay SBES ’20, October 21–23, 2020, Natal, Brazil

found that the social connection between submitters and core mem-
bers has a strong positive association with pull-requests acceptance.
Previous work focused on open-source environments and their
relations. In order to complement these studies, we will use some
of the social aspects observed, such as communication dynamics,
to assess their influence on design decay.

Effect of social aspects on code quality. Bettenburg and Has-
san [3] investigated the impact of social interaction measures on
post-release defects. The authors observed that social information
can not be used as a substitute to traditional product and process
metrics used in defect prediction models. Bird et al. [5] examined
the relationship between ownership and failures in two large indus-
trial software projects. They found that the number of developers
has a strong positive relationship with failures. Falcão et al. [12]
investigated the relationship between social, technical factors, and
the introduction of bugs. The authors identified that both social
and technical factors can discriminate between buggy and clean
commits, such as ownership level of developers’ commit, and social
influence. These works use social and technical metrics to under-
stand the influence over the presence of code defects. Our work
differs from these studies, by analyzing if and what extent metrics
related to two social aspects are good indicators of the design decay.

Our work differs from the existing ones in several ways: (i) we
analyzed social aspects not only related to code review tasks; (ii)
while most studies are focused on analyzing the influence of social
aspects on software defects and vulnerabilities, we investigated
the influence of social aspects on design decay; and (iii) we used
a multiple logistic regression model technique to evaluate which
social aspects indicate design decay separately and together.

3 MOTIVATING EXAMPLE
This section presents a real example in which design decay was
introduced in the system after merging a pull request. We aim to
highlight possible aspects surrounding the discussion that could
have possibly indicated that the changes would influence a design
decay. For this purpose, we adopt merged pull request #8153 from
the Elasticsearch project, to motivate our study. Figure 1 illustrates
this pull request in two parts that represent two periods: before and
after the merge. We discussed our example step-by-step as follows.

This pull request was titled “Add inner hits to nested and par-
ent/child queries” and its main goal was the addition of a new feature.
As seen in step 1 , the discussion starts with the author reporting
that his pull request is related to Issues #3022 and #3152. This discus-
sion evidence the existence of multiple concerns being addressed
in the same pull request. Moreover, after a few rounds of review
by two different reviewers, this pull request was also mentioned
on another Issue (# 761). Further in the discussion (step 2), we
can observe that another participant, an user, joins the discussion
by asking the author for information about the performance of
the feature being developed, in his use case. The author promptly
answers the user and returns to discussing his code changes.

Perhaps due to the precedent set, another participant, also an
user, joins the discussion (step 3) and also asks something about
the feature, and again, the author answers it; but this time, reaches
the conclusion that the question relates to another unreleased fea-
ture. After this, the user who asked the first question comments

again (step 4) giving suggestions about how the feature should be
implemented, which this time are never answered by the author.

A few rounds of review later, and the Pull Request is merged.
The changes contained in this pull request ended up being large,
with one reviewer later saying “If you perform some changes, please
do them as separate commits so that I don’t need to review everything
again, this change is BIG!” (shown in step 5). When the change
was merged, a new issue (#8153) was also associated to the pull
request, further indicating that new concerns were added during
the development of the code changes (step 6).

After the Pull Request was merged, four more users commented
asking questions related to the feature being introduced: “can I
bump our use case against this to see if I am understanding this
feature correctly?”, “Has this work be slated for a particular release
yet?”, and so on. The discussion in this pull request continued for
seven months after the merge, containing multiple questions and
suggestions for possible improvements.

In this example, we can observe many social aspects surrounding
the discussion, such as: (i) different participant roles (core devel-
opers of the organization, contributors and users); (ii) temporal
aspects (the time span of the pull request); and, (iii) size and content
of comments (snippets being used). One could argue that, some
of those social aspects could indicate or even be responsible for
changes that lead to introduction of the design decay symptoms
into the system. For instance, the presence of users (i.e. participants
that never committed on the repository) commenting and raising
extra concerns to a pull request, could have raised the complexity
of the changes. As a consequence, an increase in the design decay
symptoms could have happened.

This example shows a scenario where several confounding as-
pects created a situation where design decay symptoms were un-
knowingly increased in the system. By analyzing some of those
aspects, such as process metrics relating to the changes and metrics
about social aspects related to the discussion, we hope to improve
our understanding on some of the situations and behaviors that
guide those discussions and the development contained within
them, and by doing that, we hope to also improve our knowledge
about how those aspects can influence design decay.

4 STUDY SETTINGS
4.1 Goal and Research Questions
We relied on the Goal Question Metric template [48] to describe
our study goal as follows: analyze social aspects; for the purpose of
understanding their impact on design decay; concerning changes in
structural design quality; from the viewpoint of software developers
when performing code changes; in the context of five open-source
systems. We introduce each research question (RQs) as follows.

RQ1: Are social metrics related to design decay? – RQ1 aims at
investigating if there is a statistically significant difference between
social measures for impactful pull requests and unimpactful ones.
We consider that amerged pull request is impactful when an increase
or decrease in design decay was observed as a result of merging
the pull request changes. Conversely, unimpactful pull requests are
merged pull requests that do not affect on the design decay. Thus,
by answering RQ1, we will be able to understand which social
metrics are more related or not with impactful pull requests.

SBES ’20, October 21–23, 2020, Natal, Brazil Caio Barbosa et al.

Figure 1: Discussion in pull request #8153 from Elasticsearch project

1

2

3

4

5

6

RQ2: Towhat extent the communication dynamics influence the de-
sign decay? – During software development, the influence of differ-
ent social aspects may contribute to design decay. Thus, differently
from the previous research question, RQ2 aims at investigating to
what extent multiple social metrics related to the communication
dynamics aspect influence design decay. Thus by answering RQ2
we can evidence whether each social metric, by considering the
presence of others, can be used as indicators of design decay.

RQ3: To what extent the discussion content influence the design
decay? – Similar to RQ2, we investigate as multiples social metrics
related to the discussion content aspect influence design decay. By
answering RQ3, we also can compare which social aspects, i.e.,
communication dynamics and discussion content when analyzed
in isolation, are sufficient or not to indicate a design decay. Fur-
thermore, we can reveal if the combination of these multiple social
aspects results in a better indication of the design decay. Our goal is
to provide a set of metrics that can be used, in the context of social
aspects on discussions inside pull requests, to indicate the increase
or the decrease of design decay symptoms. By doing this, we can
shed light on future work on social aspects and design decay.

4.2 Study Steps and Procedures
Step 1: Selecting open-source systems. From GitHub, we se-
lected five open-source Java projects that widely adopt pull request-
based development. We selected only open-source projects to allow
study replication. To select them, we followed criteria based on
related studies [12, 43]. We selected systems that matched with the
following criteria: (i) systems that use pull request reviews as a
mechanism to receive and evaluate code contributions; (ii) systems
that have at least 1k commits and pull requests; (iii) systems that are
at least 5 years old and are currently active. Moreover, we selected
this criteria to avoid known mining perils [19]. Finally, we focused
on Java systems due to constraints of the DesigniteJava tool [36]
(see Step 2). Table 1 provides details about each selected system.

The first column shows the names of each selected system and the
remaining columns present: system’s domain; number of commits;
number of pull-requests; and period considered in this study.

Table 1: Software systems investigated in this study

System Domain # Commits # Pull-requests Time span LOC
Elasticsearch Search Engine 17,251 4598 2011-2018 734,514
Presto Query Engine 1,958 1,542 2012-2019 635,760
Netty Framework 4,071 147 2011-2019 279,572
OkHttp HTTP client 9.690 4,013 2012-2019 36,686
RxJava Library 4,140 1,299 2013-2016 103,609

Step 2:Detectingmultiple design decay symptoms.Weused
the DesigniteJava tool [36] to detect a total of 27 decay symptoms
types: 17 high-level structural smells, and 10 low-level structural
smells. Hence, for each system, we identified these decay symp-
toms by considering each pull request that has been submitted and
merged during the project history. For each merged pull request,
we have downloaded a snapshot of each commit related to this pull
request and its parent. Then, we accessed the difference between
them, by following this methodology, we are guaranteeing that
the introduced design decay symptoms were solely introduced by
the code change in the pull request, this way we avoid the Rebase
effect [30, 31]. This is due to such a pull request being the only
potential point in time in which the code could be changed. Table 2
lists the 27 symptoms types investigated in our study, where the
high-level structural smells and low-level structural smells are pre-
sented in the upper and bottom halves of the table, respectively. The
descriptions, detection strategies, and thresholds for each symptom
are available in our replication package [2].

Step 3: Computing design decay indicators in terms of den-
sity symptoms. Based on previous studies [8, 26, 29, 40, 45], we
have selected the density of symptoms as indicators of design de-
cay1. For this purpose, for each target system, we computed the
difference of the indicator for each decay symptom, i.e., high-level
1We also compute diversity as an indicator. However, we did not observe any difference
in the results of density and diversity. Thus, we decided to use only density.

Revealing the Social Aspects of Design Decay SBES ’20, October 21–23, 2020, Natal, Brazil

Table 2: Degradation symptoms investigated in this study

High-level symptoms
Imperative Abstraction, Multifaceted Abstraction, Unutilized Abstraction,
Unnecessary Abstraction, Deficient Encapsulation, Unexploited Encapsulation,
Broken Modularization, Insufficient Modularization, Hub Like Modularization,
Cyclic Dependent Modularization, Rebellious Hierarchy, Wide Hierarchy,
Deep Hierarchy, Multipath Hierarchy, Cyclic Hierarchy, Missing Hierarchy,
Broken Hierarchy.
Low-level symptoms
Abstract Function Call From Constructor, Complex Conditional, Complex Method,
Empty Catch Block, Long Identifier, Long Method, Long Parameter List,
Long Statement, Magic Number, Missing Default.

and low-level structural smells, by considering all merged pull re-
quests collected. We computed the density as a sum of the aggregate
value of the number of instances of symptoms types in each smelli-
ness file for each version of the system before and after the merged
pull request. In summary, a positive difference in the density of
symptoms indicates an increase in the design decay as a result of the
merged pull request, therefore, there is a worsening on the design.
Similarly, a negative difference in density of symptoms indicates a
decrease of the design decay as a result of the merged pull request.
Finally, a difference equal to zero in the density of symptoms indi-
cates that there has been no structural design change. In total, we
have computed the four indicators for 11,599 merged pull requests.
We provide all computed indicators in our replication package [2].

Step 4: Calculating control metrics and social aspects. Ta-
ble 3 shows the 15 metrics that we have used to measure certain
social aspects occurring parallel to the code development. The first
part of Table 3 describes the control variables that we computed to
avoid some factors that may affect our outcome if not adequately
controlled. As control variables, we used product and process met-
rics, which have been shown by previous research to be correlated
with design decay [20, 32]. The second part of Table 3 describes the
metrics that we considered as independent variables to measure cer-
tain social aspects. We have grouped each metric in two categories,
each one representing a social aspect. Communication dynamics
represent the dynamic of the discussion activity, such as the role
of participants involved in a discussion or temporal aspects of the
messages. Finally, discussion content represents the interaction of
developers during the exchange of messages and obtained informa-
tion about the content of each message. For instance, the number of
snippets written in a discussion. We emphasize that these metrics
are extensively used by previous works as reported in [47] to mea-
sure the social aspects. Moreover, all two categories investigated in
our study suggest social aspects that may be favorable or not the
structural design change.

Step 5: Assessing the relationship between social aspects
and impactful pull requests. We use a statistical approach to
determine which social metrics are able to discriminate between
impactful pull requests and the unimpactful ones. We observe that
the social metrics are not normally distributed [22]. Thus, we use
theWilcoxon Rank Sum Test [46] to decide whether a social metric is
statistically different for impactful pull requests when compared to
the unimpactful ones. The test was conducted using the customary
.05 significance level.

Step 6: Evaluating the influence of multiple social aspects
on design decay.We assess the influence of each social aspect over
the design decay. For this purpose, we created a multiple logistic
regression model for each aspect, by considering each metric that

composes an aspect in the presence of each one other. Additionally,
we also created a multiple logistic regression model that combines
all social aspects and their related metrics together. All the social
aspects and their related metrics presented in Table 3 are predictors
in the model, and the outcome variable is whether there was decay
on the design symptoms related to the merged pull request. We
choose a multiple logistic regression approach due to the fact that
we are studying the effect of multiple predictors (i.e., the metrics) in
a binary response variable. We remove from our models the metrics
that have a pair-wise correlation coefficient above 0.7 [9] to avoid
the effects of multicollinearity.

Furthermore, we measure the relative impact to understand the
magnitude of the effect of the metrics over the possibility of a
merged pull request degrading the system design. We estimate the
relative impact using the odds ratio [10]. In our study, odds ratios
represent the increase or decrease in the odds of a pull request
degrading the system occurring per “unit” value of a predictor
(metric). An odds ratio < 1 indicates a decrease in these odds (i.e.,
a risk-decreasing effect), while > 1 indicates an increase (i.e., a
risk-increasing effect). Most of our metrics presented a heavy skew.
To reduce it, we apply a log2 transformation on the right-skewed
predictors and a 𝑥3 transformation on the left-skewed. Moreover,
we normalize the continuous predictors in the model to provide
normality. As a result, the mean of each predictor is equaled to zero,
and the standard deviation to one.

To ensure the statistical significance of the predictors, we employ
the customary 𝑝-value < .05 for each predictor in the regression
models. Finally, we also report the amount of deviance accounted
for by our multiple logistic regression models, in terms of the D-
squared [16]. Similar to R-squared [22] for linear regression models,
the D-squared represents the goodness-of-fit of logistic regression
model, measured by the residual deviance (i.e., the deviance that
is unexplained by the model). A perfect model has no residual
deviance and its D-squared takes the value of 1.

5 RESULTS AND DISCUSSION
5.1 Social Metrics and Impactful Pull Requests
We address RQ1 by understanding which social metrics can dis-
criminate between impactful pull requests and unimpactful pull
requests. As described in Step 3 of Section 4.2, we consider that
a merged pull request is impactful when it increases or decreases
the design decay. Conversely, unimpactful pull requests do not af-
fect the design decay. Table 4 shows the results of the Wilcoxon
Rank Sum test [46] grouped by social aspects metric, design de-
cay symptom, i.e., low-level and high-level structural smells, and
system. Each row represents the 𝑝-values of the metrics obtained
as results of the Wilcoxon Rank Sum test for each grouping. The
last column (All) represents the results from all systems combined.
The cells in gray represent the 𝑝-values that obtained statistical
significance (i.e., 𝑝-value < .05), where there is a valid distinction
between impactful and unimpactful pull requests.

The relationship with impactful pull requests. Table 4 re-
veals some interesting conclusions. First, we observed that many
metrics were statistically different for impactful pull requests when
compared to unimpactful ones. This observation is consistent in
all projects analyzed. Moreover, note that the Discussion Length

SBES ’20, October 21–23, 2020, Natal, Brazil Caio Barbosa et al.

Table 3: Control and independent variables used in our study.
Type Metrics Description Rationale

Control variables
Patch Size Number of files being subject of review. Large patches can be more prone to be analyzed for how the in-

volved classes are designed.
Diff Size Difference of the sum of the Lines of Code metric computed on the version

before and the version after the review of all classes being subject of review
Large classes are hard to maintain and can be more prone to be
refactoring [33]Product

Diff Complexity Difference of the sum of the Weighted Method per Class metric computed
on the version before and after review of all classes being subject of review.

Classes with high complexity are potential candidates to be refac-
tored

Process Patch Churn Sum of the lines added and removed in all the classes being subject to
review.

Large classes are hard to maintain and can be more prone to be
subject to refactoring.

Independent variables
Number of Users Number of unique users that interacted in any way in a discussion inside

a Pull Requests (opened, commented, merged or closed)
Number of Contributors Number of unique contributors that interacted in any way in a Pull Re-

quest (opened, commented, merged or closed)
Number of Core Developers Number of unique core developers that interacted in any way in a Pull

Request (opened, commented, merged or closed)

This metric allows us to identify discussions with the presence of
common users, constant contributors, experienced developers or
core members of the project [3]. The classification method can be
found on [2].

Pull Request Opened By The type of user that has opened each pull request. The user might be an
Employee or Temporary. Employees are active contributors and code de-
velopers. Conversely, temporary are developers that do not actively work
on the project or does not work for the software organization

Pull Requests opened by temporaries have more risk of increas-
ing design symptoms [47]. The classification method can be
found on [2].

Number of Comments Number of comments inside a Pull Request. Discussions with a high number of comments around a code
change would find possible design symptoms, improving or
maintaining the quality [3].

Mean Time Between Com-
ments

Sum of the time between all comments of a Pull Request weighted by the
number of comments.

A higher time between comments (e.g., a long pause in an other-
wise fast-paced discussion) are related to design decay [3].

Communication
Dynamics Aspect

Discussion Length Time in days that a Pull Request lasted (difference of creation and closing
days).

The longer is the discussion, the higher the chance of problems
being explained and solved, avoiding design decay [47].

Number of Snippets in Discus-
sion

The number of snippets inside each comment of a Pull Requests. Those
snippets are detected by the number of ′′′ (syntax that opens a snippet in
markdown) divided by two (opening and closing).

Snippet Size Sum of the size of all snippets found on comments in a Pull Request.

The higher the number of snippets in a discussion, the clearer
the users are trying to pass a message. Therefore, avoiding
confusion and possibly design decay [3].

Number ofWords in Discussion Sum of the all words of each comment inside a Pull Request. Here we
applied the preprocessing in the text removing contractions, stop words,
punctuation, and replacing numbers.

Discussions with a high number of words are related to more
complex changes, that may lead to design decay [3].Discussion

Contents Aspect

Number of Words per Com-
ment in Discussion

Sum of the all words of each comment inside a Pull Request weighted by
the number of comments. Here we applied the preprocessing in the text
removing contractions, stop words, punctuation, and replacing numbers.

Discussions with a high weighted number of words are related
to more complex changes, that may lead to design decay [3].

Table 4: Results of the wilcoxon rank sum test grouped by social metrics, design decay symptom and software system
Elasticsearch Netty Okhttp Presto RxJava AllSocial Metrics High-level Low-level High-level Low-level High-level Low-level High-level Low-level High-level Low-level High-level Low-level

Comments <.001 <.001 .019 .019 <.001 <.001 <.001 <.001 .026 .026 <.001 <.001
Users .008 .008 .060 .060 .093 .093 <.001 <.001 .156 .156 <.001 <.001
Contributors .002 .002 .701 .701 <.001 <.001 <.001 <.001 .006 .006 <.001 <.001
Core Devs <.001 <.001 .117 .117 .002 .002 .006 .006 .251 .251 <.001 <.001
MTBC <.001 <.001 .001 .001 <.001 <.001 <.001 <.001 .001 .001 <.001 <.001
DL <.001 <.001 .034 .034 <.001 <.001 <.001 <.001 .065 .065 <.001 <.001
of Snippets <.001 <.001 .022 .022 .007 .007 <.001 <.001 .021 .021 <.001 <.001
NWD <.001 <.001 .005 .005 <.001 <.001 <.001 <.001 .003 .003 <.001 <.001
NWPCD <.001 <.001 .004 .004 <.001 <.001 <.001 <.001 .016 .016 <.001 <.001
Snippets Size <.001 <.001 .022 .022 .011 .011 <.001 <.001 .018 .018 <.001 <.001

(DL) and the Number of Contributors (# Contributors) metrics are
statistically different in 4 out of 5 projects (80%). We also observed
that the Number of Users and Number of Core Developers met-
rics reached statistical significance in 40% and 60%, respectively.
Additionally, social metrics related to the participant role (commu-
nication dynamics) were the ones that presented a more unstable
behavior, only 66% of the cases were statistically different. These
results show that social metrics can differentiate impactful pull
requests from the unimpactful pull requests. Metrics from both
social aspects might be good indicators to identify potential im-
pactful pull requests. This result evidence the rationale that pull
requests with high values for these metrics need more attention
and concern of software organizations. For such cases, software
organizations could monitor significant changes in the values of
these metrics. Such changes may indicate an increase or decrease
in design quality.

Finding 1: Social aspects are able to differentiate impactful
pull requests from the unimpactful ones. Besides, software or-
ganizations could monitor significant changes to avoid design
decay.

5.2 Communication Dynamics and Decay
We address RQ2 by understanding the influence of the commu-
nication dynamics over the design decay, we assessed the effect
of each metric that composes this aspect in the presence of each
one other. We have applied a multiple logistic regression to support
this assessment (Step 6 of Section 4.2). The results of this analysis
are summarized in Table 5. Each row contains the results of the
metrics for each project, divided by high-level structural smells and
low-level structural smells. The last column presents the D-squared
of the regression model and the percentage increase or decrease in
the D-squared compared to a model with only control metrics. The
last row contains the results for the data of all projects combined.
Moreover, the grey cells represent the statistically significant met-
rics (𝑝-value < .05) and the arrows represent the following behavior:

Revealing the Social Aspects of Design Decay SBES ’20, October 21–23, 2020, Natal, Brazil

risk-increasing (arrow up) and risk-decreasing (arrow down). Fi-
nally, the blank cells represent metrics that were removed from the
model for being collinear. We discuss the results as follows.

Risk-increasing effect of communication dynamics.Table 5
shows that one out of the five metrics related to a specific role of
the developer (i.e, user) involved in a discussion, i.e., the Number
of Users (# Users), has a risk-increasing tendency. Additionally, all
metrics related to temporal aspects of communication i.e., Mean
Time between Comments (MTBC) and Discussion Length (DL) also
presented a risk-increasing tendency. More precisely, the metric #
Users was statistically significant when we combined the data of
all projects. Conversely, the Discussion Length was statistically sig-
nificant only for the Netty project. Finally, the Mean Time between
Comments was statistically significant for two projects (Netty and
OkHttp), and when we combined all data.

These results reinforce two rationales. First, pull requests with a
high mean time between comments are related to design decay. In
other words, pull request discussions with a high delay between
the comments lead to poor workflow with little communication
dynamics between developers, indicating a risk-increasing effect.
The delay is usually related to either the lack of interest or the fact
the proper knowledge is being forgotten along the conversation.
Second, a higher number of users participating in a discussion may
hinder the communication dynamics, mainly when these users are
not familiar with a system feature, or just by filling the discussion
environment with meaningless messages. For such cases, the de-
velopers involved can be induced to increase the complexity of the
change. Such changes can lead to an increase in design decay as
observed in our motivating example (Section 3).

Moreover, the result about pull requests with long discussions
which presented a decay risk-increasing effect was surprising. One
may expect that longer discussion increases the chances of issues
being explained and resolved, avoiding design decay. Such a result
suggests that long discussions do not increase the developer’s en-
gagement on being conscious with the design structure, increasing
the chances of design decay. We observe this phenomenon in the
pull request #1388 from the OkHttp project, for instance.

This pull request was opened by a contributor that explained
their code changes in detail through two big comments (131 and 179
words each). Almost a month later, a core member of the project
reviews the code and replies to the author with an apology for
the delay in the review. Next, the author replies to the reviewer a
week later. After a long review process, the core member asked to
author why the tests were failing. Then, the author replied with
a big comment (213 words) answering the concern about the test
of the core member. Moreover, the pull request merge only would
happen three weeks later, when, again, the reviewer apologized for
his delay. In the end, this pull request did induce an increase in the
design decay, confirming our rationale for MTBC and DL metrics.

These observations suggest that future empirical studies should
focus more on the temporal aspects of communication dynamics,
which have been neglected so far. When one has to focus on a
reduced set of metrics, such metrics of temporal factor should be
part of his priorities. Also, the coremembers of organizations should
paymore attention to this kind of social factor to avoid design decay.

Finding 2: Social metrics related to temporal aspects of com-
munication dynamics work better as indicators of design
decay increase than metrics related to the role of participants.

Risk-decreasing effect of communication dynamics. The
data presented in Table 5 also allows us to observe that metrics
that measure the communication flow among developers during
a pull request discussion provide a better indication of the design
decay than metrics that measure the role of the developers. By
complementing the previous finding, we also observed that metrics
related to the communication dynamics aspect, in general, help to
characterize only the risk-increasing effect. This happens even in
the presence of control metrics.

Finding 3: In general, the aspect of communication dynamics
is a better indicator of increase in design decay symptoms.

The strength of communication dynamics metrics com-
pared to current models. Finally, we also assess to what extend
the metrics related to communication dynamics are complemen-
tary with the control variables. As shown in Table 5, we used four
control variables that represent variables widely used in the current
models of design decay analysis (Patch Size, Diff Size, Diff Com-
plexity, and Patch Churn). We note that in the three cases where
communication dynamics metrics were statistically significant in
comparison with the control variables, the D-squared of the models
only increased, ranging from 7.14% (OkHttp) up to 409.75% (all data
combined). Such finding indicates that the use of communication
dynamics metrics increases the explanatory power of design decay
models when compared to models with only control metrics.

Finding 4: The metrics of communication dynamics can in-
crease the explanatory power of current design decay models.
Thus, metrics from this aspect are relevant indicators of de-
sign decay.

5.3 Discussion Content and Decay
By following the same procedures of the previous research question,
in RQ3 we aim to understand the influence of the discussion content
over the design decay. For this purpose, we also assessed the effect
of each metric that composes this aspect in the presence of each
one other. The results of this analysis are summarized in Table 6,
in which we also used the odds ratio technique to explain the effect
of this social aspect over the design decay. Similarly to Table 5, the
grey cells represent the statistically significant metrics (𝑝-value <
.05), and the arrows represent the risk-increasing (arrow up) and
risk-decreasing (arrow down) effects. The blank cells are the metrics
missing due to collinearity. Finally, the last column presents the
D-squared of the regression models.

Risk-increasing effect of the discussion content. Table 6
presents that only the metric Number of Words in Discussion (NWD)
presented a risk-increasing tendency when we combined the data
of all projects. To understand this result we also need to address
another metric of the table, the Number of Words per Comment
in Discussion (NWPCD), which presented a risk-decreasing effect,
since the rationale of these two metrics is linked. The metric NWD
indicated that the higher the number of words in a discussion the
bigger would be the risk of design decay. However, the metric WPCD

SBES ’20, October 21–23, 2020, Natal, Brazil Caio Barbosa et al.

Table 5: Results of the odds ratio analysis for the communication dynamics
Control Variables Communication Dynamics AspectSystem Symptom PS PC DC DS # Comments # Users # Contributors # Core Devs OBTemp MTBC DL D-squared

High Level 0.576 ↓ 6.992 ↑ 0.805 1.076 1.358 1.1 2.006 1,18 1.023 0.077 (-10.46%)elasticsearch Low Level 0.576 ↓ 6.992 ↑ 0.805 1.076 1.358 1.1 2.006 1,18 1.023 0.077 (-10.46%)
High Level 1.835 ↑ 1.038 0.997 0.987 1.037 4.336 1.185 ↑ 1.302 ↑ 0.432 (42.57%)netty Low Level 1.835 ↑ 1.038 0.997 0.987 1.037 4.336 1.185 ↑ 1.302 ↑ 0.432 (42.57%)
High Level 3.572 ↑ 1.07 0.921 0.978 0.473 1.227 ↑ 1.025 0.240 (7.14%)okhttp Low Level 3.572 ↑ 1.07 0.921 0.978 0.473 1.227 ↑ 1.025 0.240 (7.14%)
High Level 10.753 ↑ 0.747 0.627 0.68 1.265 4.266 1,914 1.022 0.214 (239.68%)presto Low Level 10.753 ↑ 0.747 0.627 0.68 1.265 4.266 1,914 1.022 0.214 (239.68%)
High Level 1.875 ↑ 0.906 1.176 0.938 1.088 1,223 0.89 0.045 (28.57%)rxjava Low Level 1.875 ↑ 0.906 1.176 0.938 1.088 1,223 0.89 0.045 (28.57%)
High Level 3.815 ↑ 0.911 1.099 ↑ 1.001 0.949 1.046 1.178 ↑ 1.071 0.209 (409.75%)all Low Level 3.815 ↑ 0.911 1.099 ↑ 1.001 0.949 1.046 1.178 ↑ 1.071 0.209 (409.75%)

Table 6: Results of the odds ratio analysis for the discussion content
Control Variables Discussion Content AspectSystem Symptom PS PC DC DS Number of Snippets NWD NWPCD Snippet Size D-squared

High Level 4.488 ↑ 0.817 7.772 1.187 0.137 0.050 (-41.86%)elasticsearch Low Level 4.488 ↑ 0.817 7.772 1.187 0.137 0.050 (-41.86%)
High Level 1.882 ↑ 1.075 1.125 1.115 0.319 (5.28%)netty Low Level 1.882 ↑ 1.075 1.125 1.115 0.319 (5.28%)
High Level 2.391 ↑ 1.508 1.018 0.764 0.215 (-4.01%)okhttp Low Level 2.391 ↑ 1.508 1.018 0.764 0.215 (-4.01%)
High Level 4.461 ↑ 1.141 13.848 0.128 (103.17%)presto Low Level 4.461 ↑ 1.141 13.848 0.128 (103.17%)
High Level 1.858 ↑ 0.332 0.804 ↓ 3.542 0.045 (28.57%)rxjava Low Level 1.858 ↑ 0.332 0.804 ↓ 3.542 0.045 (28.57%)
High Level 2.023 ↑ 1.097 9.907 ↑ 0.105 ↓ 0.968 0.109 (165.85%)all Low Level 2.023 ↑ 1.097 9.907 ↑ 0.105 ↓ 0.968 0.109 (165.85%)

shows us that the higher is the number of words, but weighted by
the number of comments, the smaller would be the risk of design
decay. Moreover, these two metrics do not conflict, but they are
complementary as indicators of design decay.

We observed that the NWD can indicate an increase on design
decay when: (1) a discussion has a high number of comments and
a high number of words, however, these words are concentrated
only in a few comments; and (2) a discussion have a high number
of comments and a low-mid amount of words in each comment.
Additionally, these high numbers of words concentrated on few
comments may be indicators that only few participants were truly
engaged or providing useful pieces of information. Hence, the case
(2) happens when the conversation: (i) does not contain a set of
relevant information, (ii) message contents do not say much.

To exemplify the cases, we can observe the Pull Request #1388
from the OkHttp project, already discussed in this paper, regarding
the case (1) aforementioned. The discussion on this pull request
presented seven comments, three of them containing over one
hundred words (131, 178 and 213), and they were all made by the
author of the pull request. However, the other four remaining ones
did not have more than 35 words, which were made by a core
member working on reviewing the pull request.

These results imply that the size of a discussion is related to
design decay. The developers should evaluate the quality of their
comments since their size alone do not avoid the design decay.

Finding 5: Discussions with a high number of words, when it
is not accompanied by a high number of words per comment,
work as indicators of design decay increase.

Risk-decreasing effect of the discussion content As stated
in the previous finding, we also observed that the metric Number
of Words per Comment in Discussion (NWPCD) presented a risk-
decreasing effect. Moreover, this behavior was observed on the

RxJava project, and when we combined all data of projects. This
result also suggests that, even in situations where the number of
comments is low, but the number of words per comment is high,
there is a high volume of information that may be related to the
complexity of the change. As well as discussion on changes that
may affect the structural quality of the system. In other words, there
is a concentration of useful comments.

Finding 6: In general, the discussion content can indicate the
increase (number of words in discussion) and the decrease
(number of words per comment in discussion) of design decay
symptoms.

The strength of discussion content metrics compared to
current models. Similarly to RQ2, we assess how discussion con-
tent metrics can complement control metrics. Table 6 presents
the D-squared measure of the studied models and the percentage
increase or decrease in this measure when compared to current
models. In summary, we observed two cases in which discussion
content metrics were statistically significant: the D-squared of the
models increased 28.57% (RxJava) and 165.85% (all data combined).
These results indicate that the discussion content metrics are also
able to increase the explanatory power of design decay models.

Finding 7: Discussion content metrics may be significant
indicators of design decay due to the increase of explanatory
power when included in current models.

The communication dynamics aspect vs. discussion con-
tent aspect. By comparing the results obtained by each social
aspect in isolation (Tables 5 and 6), we observed that the discussion
content metrics help to characterize both risk-increasing and risk-
decreasing effects. However, the communication dynamics metrics,
in general, help to characterize only the risk-increasing effect. This
happens even in the presence of control metrics. In summary, this

Revealing the Social Aspects of Design Decay SBES ’20, October 21–23, 2020, Natal, Brazil

result indicates the future studies should consider both aspects, i.e.,
communication dynamics and discussion content. However, the
discussion content aspect can be prioritized when there is a need for
a reduced number of metrics. The metrics of this aspect when com-
bined with control metrics help to characterize both risk-increasing
and risk-decreasing of design decay.

Finding 8: The metrics related of discussion content provide
a better indication of design decay than communication dy-
namics metrics, even in the presence of control metrics. In
any case, both social aspects have shown to be good selecting
indicators of design decay.

When looking at all social aspects together, which behav-
ior dowe see? Table 7 presents the results of the odds ratio analysis
whenwe combined our two social aspects (communication dynamics
and discussion content) and using the projects combined data. This
table reveals interesting results. First, when we combine the two
social aspects, new metrics related to the communication dynamics
appear as statistically significant: Number of Comments and Num-
ber of Core Developers. Both metrics presented a risk-decreasing
effect. Such a result reveals that the communication dynamics is
also a good indicator of a decrease in design decay. Finally, the
combination of social aspects did not lead to any of the previously
discussed metrics being irrelevant.

Table 7: Results of the odds ratio analysis with both social
aspects together for all project data

Metrics High level Low level
Control variables
Patch Size 1.971 ↑ 1.971 ↑
Diff Size
Diff Complexity
Patch Churn
Communication Dynamics
Number of Users 1.109 ↑ 1.109 ↑
Number of Contributors 0.885 0.885
Number of Core Developers 0.848 ↓ 0.848 ↓
Opened By: Temporaries 0.902 0.902
Number of Comments 0.346 ↓ 0.346 ↓
Mean Time Between Comments 1.081 1.081
Discussion Length 1.153 ↑ 1.153 ↑
Discussion Content
Number of Snippets in Discussion 1.334 1.334
Snippet Size 0.76 0.76
Number of Words in Discussion 15.288 ↑ 15.288 ↑
Number of Words per Comment in Discussion 0.211 ↓ 0.211 ↓
D-squared 0.122 (197.56%) 0.122 (197.56%)

These observations suggest that depending on the models you
want to build and the aspects to be observed, new social metrics can
rise as indicators of design decay. Table 7 allows us to observe that
the addition of both social aspects’ metrics to the current models
resulted in an increase in the D-squared by 197.56%. These results
indicate that communication dynamics and discussion content ac-
counted for a major contribution of deviance compared to current
models. Such a result highlights the importance of social aspects
when studying design decay.

Finding 9: When combining both social aspects in the model,
two new metrics appear on the model as risk-decreasing indi-
cators, suggesting that different metrics can emerge as design
decay indicators in different situations.

6 THREATS TO VALIDITY
Construct and Internal Validity. This study analyzes a range of
27 types of decay symptoms. Thus, our findings might be biased
by these types, even though they are commonly investigated by
previous works [26, 36, 38]. We have used the DesignateJava tool to
detect these symptoms. Thus, aspects such as precision and recall
may have influenced the results of this study. However, Designite-
Java has been used successfully in recent studies [1, 26, 36, 45],
and previous work [37] indicated a precision of 96% and a recall of
99%. The metrics chosen to represent the social aspects may not
fully represent all the possible interactions among developers that
could lead to design decay. To mitigate this threat, we choose social
aspects already analyzed by previous work and metrics of process
and product, that are commonly used for design decay analysis.

Conclusion and External Validity. We carefully performed
our descriptive and statistical analyses. Regarding the descriptive
analysis, three paper authors contributed to the computation of
the merged pull request impact on the density of symptoms. With
respect to the statistical analysis, the metrics used in this study did
not follow a normal distribution due to high skewness. To mitigate
that, we used the non-parametric Wilcoxon Rank Sum Test [46] on
RQ1 and, for the regression analysis, we reduced the heavy skew
of our metrics by applying log2 and 𝑥3 transformations. Moreover,
since multicollinearity of predictors may heavily affect the results
of a multiple regression model [9], we removed from our models the
predictors with pair-wise correlations above 0.7 (see Section 4). We
also normalized the continuous predictors in the model to ensure
normality. Furthermore, in our regression models, we controlled
some factors that may affect our outcomes via control variables
(see Section 4.2). Finally, we have investigated design symptoms in
Java software systems only. Thus, our study results may be biased
by the underlying code structure of Java-based systems, although
we highlight that Java is one of the most popular programming
languages in both industry and academia.

7 CONCLUSION AND FUTUREWORK
This work investigated the relationship between two social aspects,
communication dynamics and discussion content, and design de-
cay. For that, we collected pull request data from five open-source
systems, assessed 27 types of design decay symptoms, 4 control
variables and 11 social metrics related to two social aspects.

From that analysis, we reached the following findings: (i) social
aspects can distinguishing impactful and unimpactful pull requests;
(ii) temporal factors of the communication dynamics are a better
indicator of an increase in design decay than the role of developers;
(iii) the communication dynamics is a better indicator of design
decay; (iv) social aspects should be included in current models of
design decay analysis, since they improve the explanatory power
of the models. We believe that these findings can benefit both
developers and software organizations, as they may be concerned
with carefully verifying contributions from developers.

As future work, we intend to assess the importance of contribu-
tion that are external to the analyzed projects, to better understand
the social aspects that relate to design decay, such as developers’
experience and their interactions in other communities. Moreover,
we intend to expand our work on design decay to analyze a wider

SBES ’20, October 21–23, 2020, Natal, Brazil Caio Barbosa et al.

amount of technical (e.g., software metrics) and social (e.g., social
network measures) aspects.

ACKNOWLEDGMENTS
This work was partially funded by CNPq (grants 434969/2018-4,
312149/2016-6, 427787/2018-1, 421306/2018-1, 309844/2018-5, 1428
5/2019-2, 131020/2019-6), CAPES/Proex (373892/2019-00, 88887.3739
33/2019-00), CAPES/Procad (175956), and FAPERJ (200773/2019,
010002285/2019).

REFERENCES
[1] Mamdouh Alenezi and Mohammad Zarour. 2018. An empirical study of bad

smells during software evolution using designite tool. i-Manager’s Journal on
Software Engineering 12, 4 (2018), 12.

[2] Caio Barbosa. 2020. Replication Package. Available at: https://guriosam.github.
io/revealing_social_aspects_of_design_decay/.

[3] Nicolas Bettenburg and Ahmed E Hassan. 2013. Studying the impact of social
interactions on software quality. Emp. Softw. Eng. (ESE) 18, 2 (2013), 375–431.

[4] Christian Bird, Alex Gourley, Prem Devanbu, Anand Swaminathan, and Greta
Hsu. 2007. Open borders? immigration in open source projects. In 14th MSR.
6–6.

[5] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald Gall, and
Premkumar Devanbu. 2011. Don’t touch my code! Examining the effects of
ownership on software quality. In 13th FSE. 4–14.

[6] João Brunet, Gail C Murphy, Ricardo Terra, Jorge Figueiredo, and Dalton Serey.
2014. Do developers discuss design?. In 11th MSR. ACM, 340–343.

[7] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
15th CSCW. 1277–1286.

[8] Rafael de Mello, Anderson Uchôa, Roberto Oliveira, Willian Oizumi, Jairo Souza,
Kleyson Mendes, Daniel Oliveira, Baldoino Fonseca, and Alessandro Garcia. 2019.
Do Research and Practice of Code Smell Identification Walk Together? A Social
Representations Analysis. In 13th ESEM. 1–6.

[9] Carsten F Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl,
Gabriel Carré, Jaime R García Marquéz, Bernd Gruber, Bruno Lafourcade, Pedro J
Leitão, et al. 2013. Collinearity: a review of methods to deal with it and a
simulation study evaluating their performance. Ecography 36, 1 (2013), 27–46.

[10] Anthony WF Edwards. 1963. The measure of association in a 2× 2 table. J. Royal
Stat. Soc. 126, 1 (1963), 109–114.

[11] Andre Eposhi, Willian Oizumi, Alessandro Garcia, Leonardo Sousa, Roberto
Oliveira, and Anderson Oliveira. 2019. Removal of design problems through
refactorings: Are we looking at the right symptoms?. In 27th ICPC. 148–153.

[12] Filipe Falcão, Caio Barbosa, Baldoino Fonseca, Alessandro Garcia, Márcio Ribeiro,
and Rohit Gheyi. 2020. On Relating Technical, Social Factors, and the Introduction
of Bugs. In 27th SANER. 378–388.

[13] Martin Fowler. 1999. Refactoring. Addison-Wesley Professional.
[14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory

study of the pull-based software development model. In 36th ICSE. 345–355.
[15] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.

2015. Work practices and challenges in pull-based development: the integrator’s
perspective. In 37th ICSE, Vol. 1. 358–368.

[16] Antoine Guisan and Niklaus E Zimmermann. 2000. Predictive habitat distribution
models in ecology. Ecological modelling 135, 2-3 (2000), 147–186.

[17] Ahmed E Hassan. 2009. Predicting faults using the complexity of code changes.
In 31st ICSE. 78–88.

[18] Mario Hozano, Alessandro Garcia, Baldoino Fonseca, and Evandro Costa. 2018.
Are you smelling it? Investigating how similar developers detect code smells. Inf.
Softw. Technol. (IST) 93 (2018), 130–146.

[19] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2016. An in-depth study of the promises and perils
of mining GitHub. Emp. Softw. Eng. (ESE) 21, 5 (2016), 2035–2071.

[20] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change-and fault-proneness. Emp. Softw. Eng. (ESE) 17, 3 (2012), 243–275.

[21] Robert C. Martin and Micah Martin. 2006. Agile Principles, Patterns, and Practices
in C# (Robert C. Martin). Prentice Hall PTR, Upper Saddle River, NJ, USA.

[22] John H McDonald. 2009. Handbook of biological statistics. Vol. 2. Sparky House
Publishing.

[23] Rafael Mello, Roberto Oliveira, Leonardo Sousa, and Alessandro Garcia. 2017.
Towards effective teams for the identification of code smells. In 10th CHASE.
62–65.

[24] Andrew Meneely, Alberto C. Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant, and Kayla Davis.

2014. An Empirical Investigation of Socio-Technical Code Review Metrics and
Security Vulnerabilities. In 6th SSE. 37–44.

[25] W Oizumi, A Garcia, L Sousa, B Cafeo, and Y Zhao. 2016. Code Anomalies
Flock Together: Exploring Code Anomaly Agglomerations for Locating Design
Problems. In 38th ICSE.

[26] Willian Oizumi, Leonardo Sousa, Anderson Oliveira, Luiz Carvalho, Alessandro
Garcia, Thelma Colanzi, and Roberto Oliveira. 2019. On the density and diversity
of degradation symptoms in refactored classes: A multi-case study. In 30th ISSRE.

[27] Willian Oizumi, Leonardo Sousa, Anderson Oliveira, Alessandro Garcia,
Anne Benedicte Agbachi, Roberto Oliveira, and Carlos Lucena. 2018. On the
identification of design problems in stinky code: experiences and tool support. J.
Braz. Comput. Soc. 24, 1 (2018), 13.

[28] Gustavo Ansaldi Oliva, Igor Steinmacher, Igor Wiese, and Marco Aurélio Gerosa.
2013. What can commit metadata tell us about design degradation?. In 13th
IWPSE. 18–27.

[29] Anderson Oliveira, Leonardo Sousa, Willian Oizumi, and Alessandro Garcia. 2019.
On the Prioritization of Design-Relevant Smelly Elements: A Mixed-Method,
Multi-Project Study. In 13th SBCARS. 83–92.

[30] Matheus Paixao and Paulo Henrique Maia. 2020. Rebasing in Code Review
Considered Harmful: A Large-Scale Empirical Investigation. In 19th SCAM. 45–
55.

[31] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro
Garcia, Jens Krinke, and Emilio Arvonio. 2020. Behind the Intents: An In-depth
Empirical Study on Software Refactoring in Modern Code Review. In 17th MSR.

[32] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco
Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Emp. Softw.
Eng. (ESE) 23, 3 (2018), 1188–1221.

[33] Fabio Palomba, Annibale Panichella, Andy Zaidman, Rocco Oliveto, and Andrea
De Lucia. 2017. The scent of a smell: An extensive comparison between textual
and structural smells. IEEE Trans. Softw. Eng. (TSE) 44, 10 (2017), 977–1000.

[34] Mohammad Masudur Rahman and Chanchal K Roy. 2014. An insight into the
pull requests of github. In 11th MSR. 364–367.

[35] Shade Ruangwan, Patanamon Thongtanunam, Akinori Ihara, and Kenichi Mat-
sumoto. 2019. The impact of human factors on the participation decision of
reviewers in modern code review. Emp. Softw. Eng. (ESE) 24, 2 (2019), 973–1016.

[36] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016. Designite: a software
design quality assessment tool. In 1st BRIDGE. 1–4.

[37] Tushar Sharma, Paramvir Singh, and Diomidis Spinellis. 2020. An empirical
investigation on the relationship between design and architecture smells. Emp.
Softw. Eng. (ESE) (2020).

[38] Tushar Sharma and Diomidis Spinellis. 2018. A survey on software smells. J.
Syst. Softw. (JSS) 138 (2018), 158–173.

[39] Marcelino Campos Oliveira Silva, Marco Tulio Valente, and Ricardo Terra. 2016.
Does technical debt lead to the rejection of pull requests?. In 12th SBSI.

[40] Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro
Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, et al. 2018. Identifying design problems in the source code: A
grounded theory. In 40th ICSE. 921–931.

[41] Antony Tang, Aldeida Aleti, Janet Burge, and Hans van Vliet. 2010. What makes
software design effective? Design Studies 31, 6 (2010), 614–640.

[42] Richard N Taylor and Andre Van der Hoek. 2007. Software design and architecture
the once and future focus of software engineering. In FOSE’07. IEEE, 226–243.

[43] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Influence of social and
technical factors for evaluating contribution in GitHub. In 36th ICSE. 356–366.

[44] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: evaluat-
ing contributions through discussion in GitHub. In 22nd FSE. 144–154.

[45] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Blenilio, Rafael Lima,
Alessandro Garcia, and Carla Bezerra. 2020. How Does Modern Code Review
Impact Software Design Degradation? An In-depth Empirical Study. In 36th
ICSME. 1 – 12.

[46] Elise Whitley and Jonathan Ball. 2002. Statistics Review 6: Nonparametric meth-
ods. Critical care 6, 6 (2002), 509.

[47] Igor Scaliante Wiese, Filipe Roseiro Côgo, Reginaldo Ré, Igor Steinmacher, and
Marco Aurélio Gerosa. 2014. Social metrics included in prediction models on
software engineering: a mapping study. In 10th PROMISE. 72–81.

[48] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering (1st ed.). Springer
Science & Business Media.

[49] Aiko Yamashita, Marco Zanoni, Francesca Arcelli Fontana, and Bartosz Walter.
2015. Inter-smell relations in industrial and open source systems: A replication
and comparative analysis. In 31st ICSME. 121–130.

[50] Yue Yu, Gang Yin, Huaimin Wang, and Tao Wang. 2014. Exploring the patterns
of social behavior in GitHub. In 1st CrowdSoft. 31–36.

[51] Farida El Zanaty, Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi
Matsumoto. 2018. An empirical study of design discussions in code review. In
12th ESEM. ACM, 11.

https://guriosam.github.io/revealing_social_aspects_of_design_decay/
https://guriosam.github.io/revealing_social_aspects_of_design_decay/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Pull Request Discussion and Social Aspects
	2.2 Design Decay and its Symptoms
	2.3 Related Work

	3 Motivating Example
	4 Study Settings
	4.1 Goal and Research Questions
	4.2 Study Steps and Procedures

	5 Results and Discussion
	5.1 Social Metrics and Impactful Pull Requests
	5.2 Communication Dynamics and Decay
	5.3 Discussion Content and Decay

	6 Threats to Validity
	7 Conclusion and Future Work
	Acknowledgments
	References

